FOREST: a PGF/TikZ-based package for drawing linguistic trees
v2.1.5

Saso Zivanovié*

July 14, 2017

Abstract

FOREST is a PGF/TikZ-based package for drawing linguistic (and other kinds of) trees. Its main
features are (i) a packing algorithm which can produce very compact trees; (ii) a user-friendly inter-
face consisting of the familiar bracket encoding of trees plus the key—value interface to option-setting;
(iii) many tree-formatting options, with control over option values of individual nodes and mechanisms
for their manipulation; (iv) a powerful mechanism for traversing the tree; (v) the possibility to decorate
the tree using the full power of PGF/TikZ; (vi) an externalization mechanism sensitive to code-changes.

()

\pgfmathsetseed{14285}
\begin{forest}
random tree/.style n args={3}{/ #1 = maz levels, #2 = maz children, #3 = max content
content/.pgfmath={random(0,#3)},
if={#1>0}{repeat={random(0,#2)}{append={[,random tree={#1-1}{#2}{#3}1}}}{}},
before typesetting nodes={for tree={draw,s sep=2pt,rotate={int(30*rand)},1l+={5*rand},
if={isodd(level ())}{fill=green}{fill=yellow}}},
important/.style={draw=red,line width=1.5pt,edge={red,line width=1.5pt}},
before drawing tree={sort by=y, for nodewalk={min=tree,ancestors}{important,typeset node}}
[,random tree={9}{3}{100}]
\end{forest}

*e-mail: saso.zivanovic@guest.arnes.si; web: http://spj.fl.uni-lj.si/zivanovic/

mailto:saso.zivanovic@guest.arnes.si
http://spj.ff.uni-lj.si/zivanovic/

Contents

1 Introduction

2 Tutorial
2.1 Basic usage
2.2 Options
2.3 Decorating the tree
2.4 Node positioning
2.4.1 The defaults, or the hairy details of ver-
tical alignment
2.5 Advanced option setting
2.6 Wrapping
2.7 Externalization
2.8 Expansion control in the bracket parser

3 Reference
3.1 Package loading and options
3.2
3.3 The bracket representation
3.4 The workflow
3.4.1 Stages
3.4.2 Temporal propagators
3.4.3 Drawing the tree
3.5 Node keys
3.5.1 Spatial propagators
3.5.2 Various
3.6 Options and registers.
3.6.1 Setting
3.6.2 Reading
3.6.3 Declaring
3.7 Formatting the tree
3.7.1 Node appearance
3.7.2 Node position.
3.7.3 Edges
3.7.4 Information about node
3.7.5 Various
3.8 Nodewalks.
3.8.1 Invoking (embedded) nodewalks

3.8.2 Single-step keys
3.8.3 Multi-step keys

Invocation

3.8.4
3.8.5
3.8.6
3.8.7
3.8.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

Operations
History
Miscellaneous
Short-form steps
Defining steps
Conditionals
Loops
Dynamic tree
Handlers.
Argument processor
Aggregate functions
Relative node names
The forest coordinate system
Anchors
Additional pgfmath functions
3.19 Standard node
3.20 Externalization

4 Libraries
4.1 1linguistics
411 GP1
4.2 edges

5 Gallery

5.1 Decision tree
5.2 forest-index
5.2.1 Memoize

6 Past, present and future
6.1 Changelog
6.1.1 v2.1
6.1.2 v2.0
6.1.3 v1.0
6.2 Knownbugs.................
6.3 Acknowledgements

References

1 Introduction

Over several years, I had been a grateful user of various packages for typesetting linguistic trees. My main
experience was with qtree and synttree, but as far as I can tell, all of the tools on the market had the
same problem: sometimes, the trees were just too wide. They looked something like the tree on the left,
while I wanted something like the tree on the right.

CP CP
/\ /\
DP TP DP TP
/N N NN\
D NP T vP D NP T vP
/N /N VA NEYAN
N CcpP v VP N CP v VA
AN /N /NN
C TP DP Vv’ C TP DP Vv’
/N N /NN
T vP \Y% DP T vP \Y% DP
N
DP V'’ DP V’
AN
V DP V DP

Luckily, it was possible to tweak some parameters by hand to get a narrower tree, but as I quite dislike
constant manual adjustments, I eventually started to develop FOREST. It started out as xyforest, but lost
the xy prefix as I became increasingly fond of PGF/TikZ, which offered not only a drawing package but also
a ‘programming paradigm.’ It is due to the awesome power of the supplementary facilities of PGF/TikZ
that FOREST is now, I believe, the most flexible tree typesetting package for I TEX you can get.

The latest stable version of FOREST is available at CTAN. Development version(s) can be found at
GitHub. Comments, criticism, suggestions and code are all very welcome! If you find the package useful,
you can show your appreciation by making a PayPal donation to saso.zivanovic@guest.arnes.si.

2 Tutorial

This short tutorial progresses from basic through useful to obscure ... fortunately, it is not the only new-
comer’s source of information on FOREST: check out Forest Quickstart Guide for Linguists. Another very
useful source of information (and help!) about FOREST and TEX in general is TEX StackExchange. Check
out the questions tagged forest!

2.1 Basic usage

A tree is input by enclosing its specification in a forest environment. The tree is encoded by the bracket
syntazx: every node is enclosed in square brackets; the children of a node are given within its brackets, after
its content.

\begin{forest}
[vp
vpP [DP]
/\ v
DpP V vl
/ \\ [DP]
vV DP]]
\end{forest}

(€]

http://www.ctan.org/pkg/forest
https://github.com/sasozivanovic/forest
https://github.com/sasozivanovic/forest
saso.zivanovic@guest.arnes.si
http://mirrors.ctan.org/info/forest-quickstart/ForestQuickstart.pdf
http://tex.stackexchange.com
http://tex.stackexchange.com/questions/tagged/forest

Binary trees are nice, but not the only thing this package can draw. Note that by default, the children
are vertically centered with respect to their parent, i.e. the parent is vertically aligned with the midpoint

between the first and the last child.
VP
RN
DP Vv’
PN

John V DP

EE VAN

sent Mary D NP

a letter

\begin{forest} (2)
[vp
[DP [John]]
v’
[V[sent]]
[DP [Mary]]
[DP[D[a]] [NP[letter]]]
]
]
\end{forest}

Spaces around brackets are ignored — format your code as you desire!

VP VP
/\ /\
Dp WV’ bDp VvV’

/\ /\

vV DP VvV DP

\begin{forest} (3)
[vp[DP] [V’ [v] [DP]]]

\end{forest}

\quad

\begin{forest}[VP
[pp 1 [v’ [Vv]l[DP]]
J\end{forest}

If you need a square bracket as part of a node’s content, use braces. The same is true for the other characters
which have a special meaning in the FOREST package, like comma , and equality sign =.

VP,
/ \

[DP] V’
/N

V ===DP===

\begin{forest} (4)
[v{p,}
[{[DP]1}]
v’
[vl
[{===DP===1}111]
\end{forest}

Macros in a node specification will be expanded when the node is drawn — you can freely use formatting

commands inside nodes!

\begin{forest} (5)

[vp
[{\textbf{DP}}]
(v’

vl
[DP11]

\end{forest}

All the examples given above produced top-down trees with centered children. The other sections of
this manual explain how various properties of a tree can be changed, making it possible to typeset radically
different-looking trees. However, you don’t have to learn everything about this package to profit from
its power. Using styles, you can draw predefined types of trees with ease. For example, a phonologist
can use the GP1 style from library linguistics to easily typeset (Government Phonology) phonological
representations. The style is applied simply by writing its name before the first (opening) bracket of the

tree.
\usepackage [linguistics]{forest} (6)
(0) R R N
‘ ‘ \begin{forest} GP1 [
N N [0[x[£1][x[r]]]
oy oo by [RIN[x[011] [x[511]
f r o S t [RIN[x]]]
J\end{forest}
Of course, someone needs to develop the style — you, me, your local TgXnician ... Fortunately, designing

styles is not very difficult once you get the hang of FOREST, if you write one, please contribute! Some

macros relating to various fields are collected in libraries that are distributed alongside the main package.
This is the case for the GP1 style used above, which is defined in the linguistics library. The simplest
way to load a library is as shown in the example, by loading the package with an optional argument. For
more information on loading libraries, see §3.1.

2.2 Options

A node can be given various options, which control various properties of the node and the tree. For example,
at the end of section 2.1, we have seen that the GP1 style vertically aligns the parent with the first child.
This is achieved by setting option calign (for child-alignment) to first (child).

Let’s try. Options are given inside the brackets, following the content, but separated from it by a comma.
(If multiple options are given, they are also separated by commas.) A single option assignment takes the
form (option name)=(option value). (There are also options which do not require a value or have a default
value: these are given simply as (option name).)

\begin{forest} (7)
ETEX numerals [\LaTeX\ numerals, calign=first
‘ \\ [arabic[1] [2]1[3][4]1]
arabic roman alph [roman[i] [ii][iii] [iv]]
1ph b d
//\\ //\\ //\\\] lalph[a] [b] [c] [d]]
1 2 3 4 i i i iv a b ¢ d \end{forest}

The experiment has succeeded only partially. The root node’s children are aligned as desired (so
calign=first applied to the root node), but the value of the calign option didn’t get automatically
assigned to the root’s children! An option given at some node applies only to that node. In FOREST, the
options are passed to the node’s relatives via special keys, called propagators. What we need above is the
for tree propagator. Observe:

\begin{forest} (8)
IXTEX numerals [\LaTeX\ numerals,
for tree={calign=first}
‘ \\ [arabic[1] [2] [3] [4]]

arabic roman alph [roman[il [1i] [iii] [iv]1]

AN AN AN [alph[al [b] [c] [d1]
23 i b e

i i i iv a d]
\end{forest}

|
1

The value of propagator for tree is a list of keys that we want to process. This keylist is propagated to all
the nodes in the subtree! rooted in the current node (i.e. the node where for tree was given), including
the node itself. (Propagator for descendants is just like for tree, only that it excludes the node itself.
There are many other for (step) propagators; for the complete list, see sections 3.5.1 and 3.8.)

Some other useful options are parent anchor, child anchor and tier. The parent anchor and
child anchor options tell where the parent’s and child’s endpoint of the edge between them should be,
respectively: usually, the value is either empty (meaning a smartly determined border point [see 2, §16.11];
this is the default) or a compass direction [see 2, §16.5.1]. (Note: the parent anchor determines where the
edge from the child will arrive to this node, not where the node’s edge to its parent will start!)

Option tier is what makes the skeletal points x in example (6) align horizontally although they occur at
different levels in the logical structure of the tree. Using option tier is very simple: just set tier=tier name
at all the nodes that you want to align horizontally. Any tier name will do, as long as the tier names of

different tiers are different ... (Yes, you can have multiple tiers!)
VP \begin{forest} 9)
/\ [VP, for tree={parent anchor=south, child anchor=north}
DP Vv [DP[John, tier=word]]

T v
[V[sent,tier=word]]

v bP DP [DP [Mary,tier=word]]
/\ [DP[D[a,tier=word]] [NP[letter,tier=word]]]
D NP 1
|)
John sent Mary a letter \end{forest}
11t might be more precise to call for tree for subtree ... but this name at least saves some typing.

Before discussing the variety of FOREST’s options, it is worth mentioning that FOREST’s node accepts all
options [2, see §16] that TikZ’s node does — mostly, it just passes them on to TikZ. For example, you can
easily encircle a node like this:?

@ \begin{forest}

[VP,circle,draw

DP Vv’ [DP] [V’ [V] [DP]]

]
/ \ \end{forest}
V DP

Let’s have another look at example (6). You will note that the skeletal positions were input by typing
xs, while the result looks like this: x (input as \times in math mode). Obviously, the content of the node
can be changed. Even more, it can be manipulated: added to, doubled, boldened, emphasized, etc. We will
demonstrate this by making example (8) a bit fancier: we’ll write the input in the arabic numbers and have
TEX convert it to the other formats. We'll start with the easiest case of roman numerals: to get them,
we can use the (plain) TEX command \romannumeral. To change the content of the node, we use option
content. When specifying its new value, we can use #1 to insert the current content.3

\begin{forest}
roman [roman, delay={for children={content=\romannumeral#1}}
PLARN [1][2][3] [4]
R T T]
\end{forest}

This example introduces another option: delay. Without it, the example wouldn’t work: we would get
arabic numerals. This is so because of the order in which the options are processed. First, the processing
proceeds through the tree in a depth-first, parent-first fashion (first the parent is processed, and then its
children, recursively; but see processing order). Next, the option string of a node is processed linearly, in
the order they were given. Option content is specified implicitely and is always the first. If a propagator is
encountered, the options given as its value are propagated immediately. The net effect is that if the above
example contained simply roman,for children={content=...}, the content option given there would
be processed before the implicit content options given to the children (i.e. numbers 1, 2, 3 and 4). Thus,
there would be nothing for the \romannumeral to change — it would actually crash; more generally, the
content assigned in such a way would get overridden by the implicit content. Key delay is true to its name.
It delays the processing of the keylist given as its argument until the whole tree was processed. In other
words, it introduces cyclical option processing. Whatever is delayed in one cycle, gets processed in the next
one. The number of cycles is not limited — you can nest delays as deep as you need.

Unlike for (step) keys we have met before, delay is not a spatial, but a temporal propagator. Several
other temporal propagators options exist, see §3.4.1.

We are now ready to learn about simple conditionals.* Every node option has the corresponding if
(option) and where (option) keys. if (option)=(value)(true options)(false options) checks whether the
value of (option) equals (value). If so, (true options) are processed, otherwise (false options). The where
(option) keys are the same, but do this for the every node in the subtree; informally speaking, where =
for tree + if. To see this in action, consider the rewrite of the tier example (9) from above. We don’t set
the tiers manually, but rather put the terminal nodes (option n children is a read-only option containing
the number of children) on tier word.’

2If option draw was not given, the shape of the node would still be circular, but the edge would not be drawn. For details,
see [2, §16].

3This mechanism is called wrapping. By default, content is the only (autowrapped toks) option, i.e. option where wrapping
works implicitely (simply because I assume that wrapping will be almost exclusively used with this option). To wrap values
of other options, use handler .wrap value; see §3.12.

4See §3.9 for further information on conditionals, including the generic if and where.

5We could omit the braces around 0 because it is a single character. If we were hunting for nodes with 42 children, we’d
have to write where n children={42}....

(10)

(11)

\begin{forest}

//// \\\\ where n children=0{tier=word}{}
[vp
DP % [DP[John]]
/ / \ v
Vv DP DP [V[sent]]
/ \ [DP [Maryl]
D NP] [DP[D[al]l [NP[letter]]]
|)
John sent Mary a letter \end{forest}
— Note that you usually don’t want to embed a where ... conditional in a for tree, as this will lead to a multiple traversal

of many nodes, resulting in a slower execution. If you're inside a for tree, you probably want to use if.

Finally, let’s talk about styles. (They are not actually defined in the FOREST package, but rather
inherited from pgfkeys.)

At the first approximation, styles are abbreviations: if you often want to have non-default parent/child
anchors, say south/north as in example (9), you could save some typing by defining a style. Styles are
defined using PGF’s handler .style, like shown below.5

\begin{forest}
VP
sn edges/.style={for tree={
//////ﬁ\\\\\\\ parent anchor=south, child anchor=north}},
DP Vv sn edges
e [vp,
Vv DP DP [DP [John,tier=word]]
A v’
D NP [V[sent,tier=word]]
‘ [DP [Mary,tier=word]]
‘ [DP[D[a,tier=word]] [NP[letter,tier=word]]1]1]1]
John sent Mary a letter \end{forest}

If you want to use a style in more than one tree, you have to define it outside the forest environment. Use
macro \forestset to do this.

\forestset{
sn edges/.style={for tree={parent anchor=south, child anchor=northl}},
background tree/.style={for tree={
text opacity=0.2,draw opacity=0.2,edge={draw opacity=0.2}}}

You might have noticed that in the last two examples, some keys occurred even before the first opening
bracket, contradicting was said at the beginning of this section. This is mainly just syntactic sugar (it can
separate the design and the content): such preamble keys behave as if they were given in the root node,
the only difference (which often does not matter) being that they get processed before all other root node
options, even the implicit content.

If you find yourself writing the same preamble for every tree in your document, consider modifying
default preamble, which is implicitely included at the beginning of every preamble.

\forestset{
default preamble={

font=\Huge,
(:} for tree={circle,draw}
I\ }

_ }
(8) (c)(®) (F) v 1 \begin{forest} [A[B][C]] \end{forest}
o \begin{forest} red [DLE]1[F]] \end{forest}
\begin{forest} for tree={dotted} [G[H][I]] \end{forest}
2.3 Decorating the tree

The tree can be decorated (think movement arrows) with arbitrary TikZ code.

6Style sn edges is actually already defined by library linguistics. The definition there is a bit more generic.

(12)

(13)

(14)

\begin{forest}

XP [xp
// \\ [specifier]
specifier X’ [XSE)(:“OSBJ
// \\ [complement]
X% complement]
]

\node at (current bounding box.south)
[below=1lex,draw,cloud,aspect=6,cloud puffs=30]
{\emph{Figure 1: The X’ templatel}};

\end{forest}

Figure 1: The X’ template

However, decorating the tree would make little sense if one could not refer to the nodes. The simplest
way to do so is to give them a TikZ name using the name option, and then use this name in TikZ code as
any other (TikZ) node name.

\begin{forest}

CP
/ \ [cp
DP . [DP,name=spec CP]
A

\ [\dots
[,phantom]

vP [vp
. / \ (pP]
- DP VWV v’
/N (v
.V DP [DP,name=object]]1]1]]
RN \draw[->,dotted] (object) tol[out=south west,in=south] (spec CP);
\end{forest}

It gets better than this, however! In the previous examples, we put the TikZ code after the tree
specification, i.e. after the closing bracket of the root node. In fact, you can put TikZ code after any
closing bracket, and FOREST will know what the current node is. (Putting the code after a node’s bracket
is actually just a special way to provide a value for option tikz of that node.) To refer to the current
node, simply use an empty node name. This works both with and without anchors [see 2, §16.11]: below,
(.south east) and Q).

\begin{forest}
[cP
Ccp [DP,name=spec CP]
/ \ [\dots
DP ... [,phantom]
A [vp
. E/P [DP]
/ \\ v’
: [vl
. DPV [DP,draw] {
B / \draw[->,dotted] () to[out=south west,in=south] (spec CP);
\% \draw[<-,red] (.south east)--++(0Oem,-4ex)--++(-2em,Opt)

node [anchor=east,align=center]{This guy\\has moved!};

}

This guy
has moved!

1111
\end{forest}

Important: the TikZ code should usually be enclosed in braces to hide it from the bracket parser. You
don’t want all the bracketed code (e.g. [->,dotted]) to become tree nodes, right? (Well, they probably
wouldn’t anyway, because TEX would spit out a thousand errors.)

Finally, the most powerful tool in the node reference toolbox: relative nodes. It is possible to refer to
other nodes which stand in some (most often geometrical) relation to the current node. To do this, follow
the node’s name with a ! and a nodewalk specification.

A nodewalk is a concise” way of expressing node relations. It is simply a string of steps, which are
represented by single characters, where: u stands for the parent node (up); p for the previous sibling; n for

7 Actually, FOREST distinguishes two kinds of steps in node walks: long-form and short-form steps. This section introduces
only short-form steps. See §3.8.

(15)

(16)

(17)

the next sibling; s for the sibling (useful only in binary trees); 1, 2, ... 9 for first, second, ... ninth child;
1, for the last child, etc. For the complete specification, see section 3.8.7.

To see the nodewalk in action, consider the following examples. In the first example, the agree arrow
connects the V node, specified simply as (), since the TikZ code follows [V], and the DP node, which is
described as “a sister of V’s parent”: 'us = up + sibling.

\begin{forest} (18)
[vp
[DP]
VP [v>
/ \ [Vl {\draw[<->] O
DP V' . controls +(left:1cm) and +(south west:0.4cm)
/ \ node [very near start,below,sloped]{\tiny agree}
(lus);}
agq V. DP [(DP]
1
]
\end{forest}

The second example uses TikZ’s fitting library (automatically loaded by FOREST) to compute the
smallest rectangle containing node VP, its first child (DP3) and its last grandchild (DP3). The example
also illustrates that the TikZ code can be specified via the “normal” option syntax, i.e. as a value to option
tikz.®

\begin{forest} (20)
Cp [cp
/ \ [DP$_1$]
DP; ... [\dots
[,phantom]
VP [VP,tikz={\node [draw,red,fit=()('1)('11)] {};}
/ \ [DP$_2¢%]
[v’
DPy, 'V’ vl
/\ (DP$_38]
V DPs3 1111
\end{forest}

2.4 Node positioning

FOREST positions the nodes by a recursive bottom-up algorithm which, for every non-terminal node, com-
putes the positions of the node’s children relative to their parent. By default, all the children will be aligned
horizontally some distance down from their parent: the “normal” tree grows down. More generally, however,
the direction of growth can change from node to node; this is controlled by option grow=(direction).® The
system computes and stores the positions of children using a coordinate system dependent on the parent,
called an Is-coordinate system: the origin is the parent’s anchor; l-axis is in the direction of growth in the
parent; s-axis is orthogonal to the l-axis (positive side in the counter-clockwise direction from l-axis); 1
stands for level, s for sibling. The example shows the Is-coordinate system for a node with grow=45.10

8 Actually, there’s a simpler way to do this: use /tikz/fit to=tree!

CP \begin{forest} (19)
/ [cp
\ [DP$_1$]
DP, . [\dots
[,phantom]
[VP,tikz={\node [draw,red,inner sep=0,fit to=treel{};}
VP [DP$_28]
/\ v
/ \ [DP$_3$]
1111
V DPs \end{forest}

9The direction can be specified either in degrees (following the standard mathematical convention that 0 degrees is to the
right, and that degrees increase counter-clockwise) or by the compass directions: east, north east, north, etc.

10The axes are drawn using coordinates given in forest cs coordinate system; the “manually” given polar coordinate
equivalent is shown in the comment.

\begin{forest} background tree
[parent, grow=45
! [child 1] [child 2] [child 3] [child 4] [child 5]
]
A\draw([,->] (-135:1cm)--(45:3cm) node[below]{1};
\draw[,->] (forest cs:1=-1cm,s=0)--(forest cs:1=3cm,s=0) node[below]{1};
A\draw[,->] (=45:1cm)--(135:3cm) nodel[right]{s};
\draw[,->] (forest cs:s=-1cm,1=0)--(forest cs:s=3cm,1=0) node[right]{s};
\end{forest}

The l-coordinate of children is (almost) completely under your control, i.e. you set what is often called
the level distance by yourself. Simply set option 1 to change the distance of a node from its parent.'’ More
precisely, 1, and the related option s, control the distance between the (node) anchors of a node and its
parent. The anchor of a node can be changed using option anchor: by default, nodes are anchored at their
base; see [2, §16.5.1].) In the example below, positions of the anchors are shown by dots: observe that
anchors of nodes with the same 1 are aligned and that the distances between the anchors of the children
and the parent are as specified in the code.!?

1(child)=10 mm 1(child)=12mm

>—-
s sep(parent)=2 mm
>— -
s sep(parent)=2mm g sep(parent)=2mm

\begin{forest} background tree,
for tree={draw,tikz={\fill[] (.anchor)circle[radius=1pt];}}
[parent
[child 1, 1=10mm, anchor=north west]
[child 2, 1=10mm, anchor=south west]
[child 3, 1=12mm, anchor=south]
[child 4, 1=12mm, anchor=base east]
]
\measureydistance [\texttt{1l(child)}=#11{(!2.anchor)}{(.anchor)}{(!1.anchor)+(-5mm,0)}{left}
\measureydistance[\texttt{1(child)}=#1]{(!3.anchor)}{(.anchor)}{(!4.anchor)+(5mm,0)}{right}
\measurexdistance [\texttt{s sep(parent)}=#1]1{(!1.south east)}{(!2.south west)}{+(0,-5mm)}{below}
\measurexdistance [\texttt{s sep(parent)}=#1]1{(!2.south east)}{(!3.south west)}{+(0,-5mm)}{below}
\measurexdistance[\texttt{s sep(parent)}=#1]1{(!3.south east)}{(!4.south west)}{+(0,-8mm) }{below}
\end{forest}

Positioning the chilren in the s-dimension is the job and raison d’etre of the package. As a first approx-
imation: the children are positioned so that the distance between them is at least the value of option s
sep (s-separation), which defaults to double PGF’s inner xsep (and this is 0.3333em by default). As you
can see from the example above, s-separation is the distance between the borders of the nodes, not their
anchors!

H11f setting 1 seems to have no effect, read about 1 sep further down this section.

12Here are the definitons of the macros for measuring distances. Args: the x or y distance between points #2 and #3 is
measured; #4 is where the distance line starts (given as an absolute coordinate or an offset to #2); #5 are node options; the
optional arg #1 is the format of label. (Lengths are printed using package printlen.)

\newcommand\measurexdistance [5] [####1]{\measurexorydistance{#2}{#3}{#4}{#5}{\x}{-|3{(5pt,0) }{#1}}
\newcommand\measureydistance [5] [####1]{\measurexorydistance{#2}{#3}{#4}{#5}{\y}{|-3{(0,5pt) }{#1}}
\tikzset{dimension/.style={<->,>=latex,thin,every rectangle node/.style={midway,font=\scriptsizel}},
guideline/.style=dotted}
\newdimen\absmd
\def\measurexorydistance#1#2#3#4#5#6#7#8{/
\path #1 #3 #6 coordinate(mdl) #1; \draw[guideline] #1 -- (mdl);
\path (md1) #6 coordinate(md2) #2; \draw[guideline] #2 -- (md2);
\path let \p1=($(md1)-(md2)$), \ni={abs(#51)} in \pgfextra{\xdef\md{#51}\global\absmd=\ni\relax};
\def\distancelabelwrapper##1{#8}/
\ifdim\absmd>5mm
\draw[dimension] (md1)--(md2) node[#4]{\distancelabelwrapper{\uselengthunit{mm}\rndprintlength\absmd}};
\else

\ifdim\md>Opt

\draw[dimension,<-] (md1)--+#7; \draw[dimension,<-] let \p1=($(0,0)-#7$) in (md2)--+(\p1);
\else

\draw[dimension,<-] let \p1=($(0,0)-#7$) in (md1)--+(\pl1); \draw[dimension,<-] (md2)--+#7;
\fi

\draw[dimension,-] (md1)--(md2) node[#4]{\distancelabelwrapper{\uselengthunit{mm}\rndprintlength\absmd}};
\fi}

10

(21)

(22)

A fuller story is that s sep does not control the s-distance between two siblings, but rather the distance
between the subtrees rooted in the siblings. When the green and the yellow child of the white node are
s-positioned in the example below, the horizontal distance between the green and the yellow subtree is
computed. It can be seen with the naked eye that the closest nodes of the subtrees are the TP and the DP
with a red border. Thus, the children of the root CP (top green DP and top yellow TP) are positioned so
that the horizontal distance between the red-bordered TP and DP equals s sep.

s sep(root)=3mm
»—

\begin{forest}
important/.style={name=#1,draw={red, thick}}
[CP, s sep=3mm, for tree=draw
[DP, for tree={fill=green}
[D] [NP[N] [CP[C] [TP, important=1left
[T] [vP[v] [vP[DP] [V’ [V][DP1111111]
[TP,for tree={fill=yellow}
[T]1 [vP[v] [VP[DP, important=right] [V’ [V] [DP1]11]
]
\measurexdistance [\texttt{s sep(root)}=#1]
{(left.north east)}{(right.north west)}{(.north)+(0,3mn)}{above}
\end{forest}

Note that FOREST computes the same distances between nodes regardless of whether the nodes are filled
or not, or whether their border is drawn or not. Filling the node or drawing its border does not change its
size. You can change the size by adjusting TikZ’s inner sep and outer sep [2, §16.2.2], as shown below:

s sep(root)=3 mm
>—

\begin{forest}
important/.style={name=#1,draw={red,thick}}
[CP, s sep=3mm, for tree=draw
[DP, for tree={fill=green,inner sep=0}
[D] [NP, important=1left [N] [CP[C] [TP[T] [vP[v]
[ve[DpP] [V’ [V][DP]1111111]
[TP,for tree={fill=yellow,outer sep=2pt}
[T, important=right] [vP [v] [VP[DP] [V’ [V] [DP]]]]1]

Iil///
2]
Ea,//

]
/ \ \measurexdistance[\texttt{s sep(root)l}=#1]
{(left.north east)}{(right.north west)}{(.north)+(0,3mm)}{above}
\end{forest}

(This looks ugly!) Observe that having increased outer sep makes the edges stop touching borders of the
nodes. By (PGF’s) default, the outer sep is exactly half of the border line width, so that the edges start
and finish precisely at the border.

Let’s play a bit and change the 1 of the root of the yellow subtree. Below, we set the vertical distance of
the yellow TP to its parent to 3cm: and the yellow submarine sinks diagonally ... Now, the closest nodes
are the higher yellow DP and the green VP.

11

(23)

(24)

s sep(root)=3mm
>

\begin{forest}
important/.style={name=#1,draw={red,thick}}
[CP, s sep=3mm, for tree=draw
[DP, for tree={fill=green}
(D] [NP[N] [CP[C] [TP
[T] [vP[v] [VP, important=1left [DP] [V’ [V] [DP]1]1]11111]
[TP,for tree={fill=yellow}, 1=3cm
[T] [vP [v] [VP[DP, important=right] [V’ [V] [DP]]111]
]
\measurexdistance [\texttt{s sep(root)}=#1]
{(left.north east)}{(right.north west)}{(.north)+(0,3mm)}{above}
\end{forest}

Note that the yellow and green nodes are not vertically aligned anymore. The positioning algorithm
has no problem with that. But you, as a user, might have, so here’s a neat trick. (This only works in the
“normal” circumstances, which are easier to see than describe.)

\begin{forest}
[CP, for tree=draw
[DP, for tree={fill=green},1%=3
[D] [NP]]
[TP,for tree={fill=yellow}
[T] (vp[DP] [V’ [V][DP]1]1]]
1
\end{forest}

We have changed DP’s 1’s value via “augmented assignment” known from many programming languages:
above, we have used 1*=3 to triple 1’s value; we could have also said 1+=bmm or 1-=5mm to increase or
decrease its value by 5 mm, respectively. This mechanism works for every numeric and dimensional option
in FOREST.

Let’s now play with option s sep.

\begin{forest}
[CP, for tree=draw, s sep=0
[DP, for tree={fill=green},1%=3
[D] [NP]]
[TP,for tree={fill=yellow}
[T] [vp[DP] [V’ [V] [DP]]11]]
]
\end{forest}

Surprised? You shouldn’t be. The value of s sep at a given node controls the s-distance between the
subtrees rooted in the children of that node! It has no influence over the internal geometry of these subtrees.
In the above example, we have set s sep=0 only for the root node, so the green and the yellow subtree are
touching, although internally, their nodes are not. Let’s play a bit more. In the following example, we set
the s sep to: 0 at the last branching level (level 3; the root is level 0), to 2mm at level 2, to 4 mm at level
1 and to 6 mm at level 0.

12

(25)

(26)

(27)

(28)
\begin{forest}

for tree={s sep=(3-level)*2mm}
[CP, for tree=draw
[DP, for tree={fill=green},1%=3
[D] [NP]]
[TP,for tree={fill=yellow}
[Tl fvp[DP] [V’ [V][DP]]1]]
]
\measurexdistance{(!11.south east)}{(!12.south west)}{+(0,-5mm) }{below}
\path(md2) - |coordinate(md) (!221.south east);
\measurexdistance{(!221.south east)}{(!222.south west)}{(md)}{below}
\measurexdistance{(!21.north east)}{(!22.north west)}{+(0,2cm)}{above}
R — > \measurexdistance{(!1.north east)}{(!'221.north west)}{+(0,-2.4cm)}{below}
4 mm 2mm
\end{forest}

<+
6 mm

As we go up the tree, the nodes “spread.” At the lowest level, V and DP are touching. In the third level,
the s sep of level 2 applies, so DP and V’ are 2mm apart. At the second level we have two pairs of nodes,
D and NP, and T and TP: they are 4 mm apart. Finally, at level 1, the s sep of level 0 applies, so the green
and yellow DP are 6 mm apart. (Note that D and NP are at level 2, not 4! Level is a matter of structure,
not geometry.)

As you have probably noticed, this example also demostrated that we can compute the value of an
option using an (arbitrarily complex) formula. This is thanks to PGF’s module pgfmath. FOREST provides
an interface to pgfmath by defining pgfmath functions for every node option, and some other information,
like the 1level we have used above, the number of children n children, the sequential number of the child
n, etc. For details, see §3.18.

The final separation parameter is 1 sep. It determines the minimal separation of a node from its
descendants. It the value of 1 is too small, then all the children (and thus their subtrees) are pushed away
from the parent (by increasing their 1s), so that the distance between the node’s and each child’s subtree
boundary is at least 1 sep. The initial 1 can be too small for two reasons: either some child is too high,
or the parent is too deep. The first problem is easier to see: we force the situation using a bottom-aligned
multiline node. (Multiline nodes can be easily created using \\ as a line-separator. However, you must first
specify the horizontal alignment using option align (see §3.7.1). Bottom vertical alignment is achieved by
setting base=bottom; the default, unlike in TikZ, is base=top).

\begin{forest} (29)
parent [parent
AN [child]
8 very [child]
tall [a very\\tall\\child, align=center, base=bottom]
child child child
\end{forest}

The defaults for 1 and 1 sep are set so that they “cooperate.” What this means and why it is necessary
is a complex issue explained in §2.4.1, which you will hopefully never have to read ... You might be out of
luck, however. What if you needed to decrease the level distance? And nothing happened, like below on
the left? Or, what if you used lots of parenthesis in your nodes? And got a strange vertical misalignment,
like below on the right? Then rest assured that these (at least) are features not bugs and read §2.4.1.

13

l4+=5mm default l-=5mm x forest (30)
AdjP AdjP AdjP / \
/ \ / \ *
AdvP Adj. . AdvP. Adj |
AdvP Adj' / \ / A\ T
Adj PP Adj. PP |
I\ X (o
Adj PP ‘ ‘
* ()
\begin{forest} i ‘
[,phantom,for children={1 sep=lex,fit=band, (x)
for 1={edge’=,1=0},baseline} ‘ ‘
[{1+=5mm},for descendants/.pgfmath=content X (x)
[AdjP [AdvP] [Adj’ [Adj] [PP111] | |
[default X
[AdjP[AdvP] [Adj’ [Adj] [PP11]] ‘ ()
[{1-=5mm},for descendants/.pgfmath=content X ‘
[AdjP[AdvP] [Adj’ [Adj] [PP11]] ‘ (x)
]
\path (current bounding box.west)|-coordinate(1l1) (1212.base); x (x)
\path (current bounding box.west)|-coordinate(12) (!2121.base);
\path (current bounding box.east)|-coordinate(r1l) (!1212.base); X ‘
\path (current bounding box.east)|-coordinate(r2) (!2121.base); ‘ (x)
\draw[dotted] (11)--(r1) (12)--(r2); x|
\end{forest} ‘ (x)
\hspace{5cm} ‘
\begin{forest} X
[x forest, baseline ‘ (x)
[[x [x [x [x [x [x [x [x [x [x [x [x1111111111111 X |
[Go) [G) [Gx) [[Gx) [Gx) [G) [Gx) [(x) [[(x) [(x) [(x)111111111111] (x)
]
\end{forest}

2.4.1 The defaults, or the hairy details of vertical alignment

In this section we discuss the default values of options controlling the l-alignment of the nodes. The defaults
are set with top-down trees in mind, so l-alignment is actually vertical alignment. There are two desired
effects of the defaults. First, the spacing between the nodes of a tree should adjust to the current font size.
Second, the nodes of a given level should be vertically aligned (at the base), if possible.

Let us start with the base alignment: TikZ’s default is to anchor the nodes at their center, while FOREST,
given the usual content of nodes in linguistic representations, rather anchors them at the base [2, §16.5.1].
The difference is particularly clear for a “phonological” representation:

\begin{forest} for tree={anchor=center} (31)
[maybe [m] [a] [y] [b] [e]]
maybe maybe \end{forest}\quad
///;/ |\{\\\\ ///;/ |\;\\\\ \begin{forest}
m a y b e m a y b e [maybe [m] [a] [y] [b] [e]]
\end{forest}

The following example shows that the vertical distance between nodes depends on the current font size.

\hbox{\small A small tree (32)

\begin{forest} baseline
A small tree VP and a large tree [VP[DP] [V’ [V] [DP]1]

VP
/ \ /\ \end{forest}
DP V’ , \normalsize and
/ \ DP Vv \large

Vv DP / \ a large tree
\begin{forest} baseline

V. DP [VP [DP] [V’ [V] [DP]11]
\end{forest}}

14

Furthermore, the distance between nodes also depends on the value of PGF’s inner sep (which also depends
on the font size by default: it equals 0.3333 em).

1 sep = height(strut) 4+ inner ysep

The default value of s sep depends on inner xsep: more precisely, it equals double inner xsep).

VP \begin{forest} baseline,for tree=draw
[vP[DP] [V’ [V] [DP]]1]

\end{forest}

DP v’ \pgfkeys{/pgf/inner sep=0.6666em}

\begin{forest} baseline,for tree=draw
[vp[DP] [V’ [V][DP11]

Vv DP \end{forest}

Now a hairy detail: the formula for the default 1.
1 =1 sep+2-outer ysep + total height(‘dj’)

To understand what this is all about we must first explain why it is necessary to set the default 1 at
all? Wouldn’t it be enough to simply set 1 sep (leaving 1 at 0)? The problem is that not all letters have
the same height and depth. A tree where the vertical position of the nodes would be controlled solely by
(a constant) 1 sep could result in a ragged tree (although the height of the child—parent edges would be
constant).

\begin{forest}
[default,baseline,for children={no edge}
[DP
[AdjP[Adj]]
[D’ [D] [NP,name=np]]1]]
default 1=0 \path (current bounding box.west) |-coordinate(1l) (np.base);

\path (current bounding box.east)|-coordinate(r) (np.base);
\draw[dotted] (1)--(r);

DP DP
// \\ // \\ \end{forest}
‘) ; \begin{forest}
AdjP D Adjp D [{1=0},baseline,for children={no edge}
‘ / \\ ‘ /\ [DP,for descendants={1=0}
Adj D NP Adj D NP [AdjP[Ad]j]]

(D’ [D] [NP,name=np]]]]
\path (current bounding box.west)|-coordinate(1l) (np.base);
\path (current bounding box.east)|-coordinate(r) (np.base);
\draw[dotted] (1)--(z);
\end{forest}

The vertical misalignment of Adj in the right tree is a consequence of the fact that letter j is the only letter
with non-zero depth in the tree. Since only 1 sep (which is constant throughout the tree) controls the
vertical positioning, Adj, child of AdjP, is pushed lower than the other nodes on level 2. If the content of
the nodes is variable enough (various heights and depths), the cumulative effect can be quite strong, see
the right tree of example (30).

Setting only a default 1 sep thus does not work well enough in general. The same is true for the reverse
possibility, setting a default 1 (and leaving 1 sep at 0). In the example below, the depth of the multiline
node (anchored at the top line) is such that the child—parent edges are just too short if the level distance
is kept constant. Sometimes, misalignment is much preferred ...

15

(33)

(34)

\mbox{}\begin{forest} (35)
[default,baseline
[first child[al[bl[c]]
[{second child\\[-lex]\scriptsize(a copy)},

default 1 sep=0 align=center[a] [b] [c]]
N RN]
first child second child first child second child \end{forest}\quad
//‘ \\ (a copy) // ‘\\ (a copy) \begin{forest} for tree={1 sep=0}
/N [{\texttt{l sep}=0},baseline
a b b ¢ a b ¢

[first child([a] [b] [c]]
[{second child\\[-1lex]\scriptsize(a copy)},
align=center[a] [b] [c]]

¢ a// L \\c *

]
\end{forest}

Thus, the idea is to make 1 and 1 sep work as a team: 1 prevents misalignments, if possible, while 1
sep determines the minimal vertical distance between levels. Each of the two options deals with a certain
kind of a “deviant” node, i.e. a node which is too high or too deep, or a node which is not high or deep
enough, so we need to postulate what a standard node is, and synchronize them so that their effect on
standard nodes is the same.

By default, FOREST sets the standard node to be a node containing letters d and j. Linguistic repre-
sentations consist mainly of letters, and in the TEX’s default Computer Modern font, d is the highest letter
(not character!), and j the deepest, so this decision guarantees that trees containing only letters will look
nice. If the tree contains many parentheses, like the right tree of example (30), the default will of course
fail and the standard node needs to be modified. But for many applications, including nodes with indices,
the default works.

The standard node can be changed using macro \forestStandardNode; see 3.19.

2.5 Advanced option setting

We have already seen that the value of options can be manipulated: in (11), we have converted numeric
content from arabic into roman numerals using the wrapping mechanism content=\romannumeral#1; in
(26), we have tripled the value of 1 by saying 1*=3. In this section, we will learn more about the mechanisms
for setting options and referring to their values.

One other way to access an option value is using macro \forestoption. The macro takes a single
argument: an option name. In the following example, the node’s child sequence number is appended to the
existing content. (This is therefore also an example of wrapping.)

\begin{forest} (36)
[,phantom,delay={for descendants={
c1 02 usz ng ts content=#1$_{\forestoption{n}}$}}
[c] [o] [ul [n] [t]1]
\end{forest}

However, only options of the current node can be accessed using \forestoption. Possibly the simplest
way to access option values of other nodes is to use FOREST’s extensions to the PGF’s mathematical library
pgfmath, documented in [2, part VI]. To see pgfmath in action, first take a look at the crazy tree on the title
page, and observe how the nodes are rotated: the value given to option rotate is a full-fledged pgfmath
expression yielding an integer in the range from —30 to 30. Similiarly, 1+ adds a random float in the [—5, 5]
range to the current value of 1.

Example (28) demonstrated that information about the node, like the node’s level, can be accessed
within pgfmath expressions. All options are accessible in this way, i.e. every option has a corresponding
pgfmath function. For example, we could rotate the node based on its content:

er (37)
//// |\\\\\ \begin{forest}
-10 & o delay={for tree={rotate=contentl}}
/ \ © < [30[-10[5][01]1[-90[180]1[90[-601[90]111]
/ / \\ \end{forest}
5 0 08T v o
[=N

All numeric, dimensional and boolean options of FOREST automatically pass the given value through
pgfmath. If you need pass the value through pgfmath for a string option, use the .pgfmath handler. The

16

following example sets the node’s content to its child sequence number (the root has child sequence number
0).

(38)

0
/// \\\ \begin{forest}
delay={for tree={content/.pgfmath=int(n)3}}
! 2 [ononoItnnn

// ‘\\ / \ \end{forest}
1 2 3 1 2

As mentioned above, using pgfmath it is possible to access options of non-current nodes. This is achieved
by providing the option function with a (relative node name) (see §3.15) argument.'3 In the next example,
we rotate the node based on the content of its parent (u means ‘up’).

30 (39)
//// / \\\\ \begin{forest}
A0 IS\ o delay={for descendants={rotate=content("!u")}}
\ \ [30[-10[5]1[01]1[-90[180]]1[90[-60] [901]1]
\end{forest}
/ /
5 0 2 =

08T —

Note that the argument of the option function is surrounded by double quotation marks: this is to prevent
evaluation of the relative node name as a pgfmath function — which it is not.

For further ways to access option values, see §2.6. Here, we continue by introducing relative node
setting: write (relative node name) . (option)=(value) to set the value of (option) of the specified relative
node. Important: computation of the value is done in the context of the original node. The following
example defines style move which not only draws an arrow from the source (the current node) to the target,
but also moves the content of the source to the target (leaving a trace). Note the difference between #1 and
##1: #1 is the argument of the style move (a node walk determining the target), while ##1 is the original
option (in this case, content) value.

(40)

\begin{forest}
for tree={calign=fixed edge angles},
move/.style={
tikz={\draw[->] () tol[out=south west,in=south] (#1);},
delay={#1.content={##1},content=t}},
[cP[][c’ [C][\dots[,phantom] [VP[DP] [V’ [V] [DP,move=!r1]1]1]11]
\end{forest}

In the following example, the content of the branching nodes is computed by FOREST: a branching
node is a sum of its children. The algorithm visits each node (but the root node) and adds its content
to the content of the parent. Note that as the computation must proceed bottom-up, for descendants
children-first propagator is used to walk through the tree.l*

13The form without parentheses option_name that we have been using until now to refer to an option of the current node
is just a short-hand notation for option_name() — note that in some contexts, like preceding + or -, the short form does not
work! (The same seems to be true for all pgfmath functions with “optional” arguments.)

141t would be possible to emulate for descendants children-first by defining a recursive style, as was done in this
manual for versions of the package prior to introduction of the bottom-up propagator. The following code produces identical
result as the code in the main text.
\begin{forest}

calc/.style={if n children={0}{}{content=0,for children={calc,!u.content/.pgfmath=int(content("!u")+content())}}},

delay=calc,

[[[31[41[6110[310[9]11[81CL[1][2]1[3]1]11]
\end{forest}

17

38 \begin{forest} (41)

delay={
12 ///// };Et;;\‘6 ewine n children={0}{}{content=0},
NN
3 4 5 3 9 6 3
/‘\ [[[3]1[4]105]11(03]109]1]1[8]1C[[1][2]1[3]1]1]
1 2 3 \end{forest}

for descendants children-first={
lu.content/.pgfmath=int (content ("!u")+content())}

Actually, for common computations such as summing things up, FOREST provides an easier way to do
it: aggregate functions (§3.14). Below, aggregate function .sum, defined as pgfkeys handler, walks through
the children (second argument) of the current node, summing up their content (first argument) and stores
the result as the content of the current node (because content is the handled key).

\begin{forest} (42)
delay={

aggregate postparse=int,
///// \QQ?\\\ for tree children-first={
if n children={0}{}{
content/.sum={content}{children}

/N ’
}
[C[3]104](5]11C03109]11[81CC[1][2]1[311]1]
\end{forest}

6
L }
|
2

2.6 Wrapping

We have already seen examples of inserting option values into other expressions. In example (11), we have
wrapped the value of the option being assigned to (#1 stood for the current value of option content);
example (36) additionally wrapped the value of option n (of the current node) using macro \forestoption.
In general, FOREST offers two ways to perform computations (from simple option value lookups to compli-
cated formulas) and insert their results into another expression (of any kind: TEX code, pgfkeys keylist,
pgfmath expression, etc.).

Historically, the first FOREST’s mechanism that offered wrapping of computed values were handlers
.wrap pgfmath arg and .wrap n pgfmath args (for n = 2,...,8), which combine the wrapping mecha-
nism with the pgfmath evaluation. The idea is to compute (most often, just access option values) arguments
using pgfmath and then wrap them into the given macro body (marked below) using TEX’s parameters (#1
etc.). Below, this is used to subscript the contents of a node with its sequential number and the number of
parent’s children.

\begin{forest} [,phantom,delay={for descendants={ (43)
content/.wrap 3 pgfmath args=
{#1$_{#2/#3}1$}
{content}{n}{n_children("'u")}}}
[c][o] [ul [n][t]]
\end{forest}

Ci/5 O2/5 Us/s Ngs5 ts/5

Note the underscore _ character in n_children: in pgfmath function names, spaces, apostrophes and other
non-alphanumeric characters from option names are all replaced by underscores.

As another example, let’s make the numerals example (7) a bit fancier. The numeral type is read off the
parent’s content and used to construct the appropriate control sequence (\@arabic, \@roman and \@alph).
(The numbers are not specified in content anymore: we simply read the sequence number n.)

\begin{forest} (44)

A

BIEX numerals delay={where level={2}{content/.wrap 2 pgfmath args=
,///// {\csname @#1\endcsname{#2}}

arabic {content ("!u") }{n}}{}},

//// \\\\ for children={1*=n},
1 2 3

4 roman [\LaTeX\ numerals,

///7/\\\\ [arabic[1[1[1[]1]
L2 [roman[]1[1[1[1]
1 11 111

iv. alph [alph[1[1[1[1]

/b/\\]

d \end{forest}

18

Invoking pgfmath is fairly time consuming and using it to do nothing but retrieve an option value seems
a bit of an overkill. To remedy the situation, argument processor (§3.13) was introduced in FOREST v2.0
and considerably expanded in v2.1. One way to invoke it is using handler .process.

The argument processor takes a sequence of instructions and an arbitrary number of arguments, trans-
forms the given arguments according to the instructions, and feeds the resulting list of arguments into the
handled key.

An instruction is given by a single-character code. The simplest instructions are: 0, which expects its
argument to be an option name (possibly preceded by a (relative node name) . to access the option value of
a non-current node) and returns the value of the option; R, which does the same for registers; and _, which
leaves the argument unchanged.

In the following example, we define style test taking four arguments and call it by providing the
arguments via .process. The instruction string ROO_ tells the argument processor that the first argument
is the value of (scratch) register temptoksa, the second the value of option n children at the current node,
the third the value of option content of the second child of the current node, and the fourth just a plain
string. Macro test is thus actually invoked with argument list {Hello}{3}{Jane}{Goodbye}.

\begin{forest}
test/.style n args={4}{align=center,
content={#1!\\I have #2 children.\\One of them is #3.\\#4!}}
[,delay={temptoksa=Hello,

Hello!
I have 3 children.
One of them is Jane.

|
Goodbyet test/.process={R0O0_}{temptoksa}{n children}{!2.content}{Goodbyel}}
// | \\ [John] [Jane] [Joel]
John Jane Joe \end{forest}

To wrap using the argument processor, use instruction w. Unless wrapping a single argument, this
instruction should be followed by a number indicating the number of arguments consumed. w will take the
required number of arguments from the list of already processed arguments and wrap them in the macro
body given as the next (yet unprocessed) argument.

The following example has the same result as example (43). Note that the order of the wrapper-macro
body and the arguments is different for .process and .wrap n pgfmath args. (Experience shows that
.process’s order is easier on the eyes.) The example also illustrates that (i) the instructions need not
be enclosed in braces and (ii) that repetition of an argument processor instruction can be indicated by
appending a number to the instruction: thus 03 below means the same as 000.

\begin{forest} [,phantom,delay={for descendants={
content/.process=03 w3
{content}{n}{!'u.n children}
C1/5 02/5 ug/s Ny/5 t5/5 {#1$_{#2/#3}$}
3
[c] o] [ul [n][t]]
\end{forest}

Note that the order of the wrapper-macro body and the arguments is different for . process and .wrap n
pgfmath args. Experience shows that .process’s order is easier on the eyes. The example also illustrates
that the instructions need not be enclosed in braces and that repetition of an argument processor instruction
can be indicated by appending a number to the instruction: 03 above is equivalent to 000.

.wrap n pgfmath args always returns a single braced expression and is thus a bit cumbersome to use
when the handled key expects multiple arguments: the trick is to enclose the expected argument list in
extra braces (marked in the code below). As .process can return multiple arguments, there is no need for
such a workaround. See the following example for comparison of the two methods.

\begin{forest}
[,phantom
[pgfmath[2,delay={for n/.wrap 2 pgfmath args=
pgfmath process {{#1}{content=#2,draw}}
‘ ‘ {content}{content ("!u")}
} [x1[x] [x1 [x11]

3 [process[3, delay={for n/.process=

2
Qit\\\ ///j;7 \\\\\\ {0 Owi}{content}
x |pgfmath| x "x x x X {!'u.content}{content=#1,draw}

} [x] [x] [x] [x]]]
]

\end{forest}

19

(45)

(46)

(47)

A single .process invocation can perform multiple wrappings. The numbering of arguments of each

wrapping starts at #1. In the example below, for nodewalk takes two arguments, a nodewalk and a list of

nodekeys. Each is produced by an independent wrapping (wrap bodies are marked in the code).

\begin{forest}
declare toks register=prefix,
declare count register=level to prefix,
prefix=X-,

////7;)\\\\\ level to prefix=1,
delay={
Xl X3 X-6 for nodewalk/.process=Rw Rw
/ \ // \\ {level to prefix}{level=#1}
2 4 5 7 8 9 {prefix}{+content=#1}
}
[0[1[211[3[4]1(511[6[7]1[81[9]11]
\end{forest}

2.7 Externalization

FOREST can be quite slow, due to the slowness of both PGr/TikZ and its own computations. However,
using ezternalization, the amount of time spent in FOREST in everyday life can be reduced dramatically.
The idea is to typeset the trees only once, saving them in separate PDFs, and then, on the subsequent
compilations of the document, simply include these PDFs instead of doing the lenghty tree-typesetting all
over again.

FOREST’s externalization mechanism is built on top of TikZ’s external library. It enhances it by
automatically detecting the code and context changes: the tree is recompiled if and only if either the code
in the forest environment or the context (arbitrary parameters; by default, the parameters of the standard
node) changes.

To use FOREST’s externalization facilities, say:!°

\usepackage [external] {forest}
\tikzexternalize

If your forest environment contains some macro, you will probably want the externalized tree to be
recompiled when the definition of the macro changes. To achieve this, use \forestset{external/depends
on macro=\macro}. The effect is local to the TEX group.

TikZ’s externalization library promises a \label inside the externalized graphics to work out-of-box,
while \ref inside the externalized graphics should work only if the externalization is run manually or by
make [2, §32.4.1]. A bit surprisingly perhaps, the situation is roughly reversed in FOREST. \ref inside the
externalized graphics will work out-of-box. \label inside the externalized graphics will not work at all.
Sorry. (The reason is that FOREST prepares the node content in advance, before merging it in the whole
tree, which is when TikZ’s externalization is used.)

2.8 Expansion control in the bracket parser

By default, macros in the bracket encoding of a tree are not expanded until nodes are being drawn —
this way, node specification can contain formatting instructions, as illustrated in section 2.1. However,
sometimes it is useful to expand macros while parsing the bracket representation, for example to define tree
templates such as the X-bar template, familiar to generative grammarians:*®

TP
Dp T’ \bracketset{action character=@}
/\ \def\XP#1#2#3{#1P [#2] [#1° [#1] [#3]1}
T VP \begin{forest}
/ \ [e\XP T{DP}{@\XP V{DP}{DP}}]
DP Vv \end{forest}
V DP

15When you switch on the externalization for a document containing many forest environments, the first compilation can
take quite a while, much more than the compilation without externalization. (For example, more than ten minutes for the
document you are reading!) Subsequent compilations, however, will be very fast.

16Honestly, dynamic node creation might be a better way to do this; see §3.11.

20

(48)

(49)

In the above example, the \XP macro is preceded by the action character @: as the result, the token following
the action character was expanded before the parsing proceeded.

The action character is not hard coded into FOREST. Actually, there is no action character by default.
(There’s enough special characters in FOREST already, anyway, and the situations where controlling the
expansion is preferable to using the pgfkeys interface are not numerous.) It is defined at the top of the
example by processing key action character in the /bracket path; the definition is local to the TEX
group.

Let us continue with the description of the expansion control facilities of the bracket parser. The
expandable token following the action character is expanded only once. Thus, if one defined macro \VP in
terms of the general \XP and tried to use it in the same fashion as \XP above, he would fail. The correct
way is to follow the action character by a braced expression: the braced expression is fully expanded before
bracket-parsing is resumed.

TP
Df{ \&w \bracketset{action character=0}
/ \\ \def\XP#1#2#3{#1P [#2] [#1’> [#1] [#3]]}
\def\VP#1#2{\XP V{#1}{#2}}
T VP \begin{forest}
/\ [0\XP T{DP}{0{\VP{DP}{DP}}}]
Dp Vv’ \end{forest}
V DP

In some applications, the need for macro expansion might be much more common than the need to
embed formatting instructions. Therefore, the bracket parser provides commands @+ and @-: @+ switches
to full expansion mode — all tokens are fully expanded before parsing them; @- switches back to the default
mode, where nothing is automatically expanded.

TP
])f{ \EV \bracketset{action character=0}
/ \\ \def \XP#1#2#3{#1P [#2] [#1° [#1] [#3]11}
\def\VP#1#2{\XP V{#1}{#2}}
T vp \begin{forest} 0+
/ \ [\XP T{DP}{\VP{DP}{DP}}]
DpP Vv’ \end{forest}
V DP

All the action commands discussed above were dealing only with TEX’s macro expansion. There is one
final action command, @@, which yields control to the user code and expects it to call \bracketResume to
resume parsing. This is useful to e.g. implement automatic node enumeration:

\bracketset{action character=@}
\newcount\xcount
\def\x#1{0@0\advance\xcount1
\edef\xtemp{[$\noexpand\times_{\the\xcount}$ [#1]1]1}/
\expandafter\bracketResume\xtemp
}
‘ ‘ \begin{forest}
f o r e S t phantom,
delay={where level=1{content={\strut #1}}{}}
o+
D\x{EN\x{o\x{rF\x{eN\x{s\x{t}]
\end{forest}

This example is fairly complex, so let’s discuss how it works. @+ switches to the full expansion mode, so
that macro \x can be easily run. The real magic hides in this macro. In order to be able to advance the
node counter \xcount, the macro takes control from FOREST by the @@ command. Since we’re already
in control, we can use \edef to define the node content. Finally, the \xtemp macro containing the node
specification is expanded with the resume command sticked in front of the expansion.

21

(50)

(51)

(52)

3 Reference

This section documents all publicly exposed keys and macros defined by the core package. All other
commands defined by the package (see the implementation typeset in forest.pdf) are considered internal
and might change without prior notice or compatibility support.

3.1 Package loading and options

Load the package by writing \usepackage{forest} in the document preamble.

Field-specific definitions and defaults are stored in separate libraries. Use \usepackage [(library
name)]{forest} to load library (library name) and its defaults alongside the main package. Loading
several libraries in this way is allowed: however, if you need more control over loading the defaults, use the
following macros.

macro \useforestlibrary[*][[{options)]]|{(library), ...} Loads the given libraries.

The starred version applies their defaults as well, while the starless does not. Multiple library names
can be given, separated by commas. Libraries can receive (options). This macro can only be used in
the preamble.

macro \forestapplylibrarydefaults{(library name),...} Loads the default settings of (library).

Multiple library names can be given, separated by commas. This macro can be used either in the
preamble or in the document body. Its effect is local to the current TEX scope.

For example, the linguistics library defines c-command related nodewalks, changes the default
parent—child edges to south-north (the main package default is border—-border) and sets the baseline to
the root'” node. Thus, if you write \usepackage [1inguistics]{forest} in your preamble, or use macro
\forestapplylibrarydefaults like below, you get the following:

package defaults:
VP \begin{forest}
/ \\ [V? 7 cannot use ”fzr c—commandei; below!
, DP, for sibling={for tree=red
bp /V\ : [v> [v]l[DP]]
package defaults: v DP \end{forest}\\ [lex]
|linguistics| library defaults:
\forestapplylibrarydefaults{linguistics}
//A\\ \begin{forest}
DP V' [ve
[DP, for c-commanded={red}]
/\ (v’ [v] [DP]]

linguistics library defaults: VP

VvV DP]
\end{forest}

package option external=true|false false

Enable/disable externalization, see §3.20.

package option compat=(keylist) Enter compatibility mode with previous versions of the package. most

If at all possible, each backwards incompatible change is given a key in the compat path, e.g.
compat=1.0-forstep reverts to the old behaviour of spatial propagators for (step), where a propa-
gator could not fail.

While each compatibility feature can be enabled individually, they are grouped for ease of use. To
load compatibility features since the last version of form x[.y[.z]], write compat=x[.y[.z]]-all or
compat=x[.y[.z]]-most. The former enables all compatibility features since that release, the latter
only those that are guaranteed to not disrupt any new functionality of the package.

To load all compatibility features since the last major release (x in x.y.z), write compat=all; to load
most of them, write compat=most or simply compat.

17For details, see §4.1.

22

(53)

To enable multiple compatibility features, either use this option multiple times, or provide it with a
comma-separated list of compatibility features. (Surround the list by braces.)

Specifying this option also defines macro \forestcompat (taking the same arguments as the package
option) which can be used to enable compatibility features locally, within the document body. To
enable compatibility mode but not enable any specific compatibility feature for the entire document,
write compat=none as a package option.

For a list of compatibility features, see §6.1.

By default, the package warns when a compatibility feature is used. Disable this behaviour by
compat=silent.

package option tikzcshack=true|false true

Enable/disable the hack into TikZ’s implicit coordinate syntax, see §3.15.

package option tikzinstallkeys=true | false true

Install certain keys into the /tikz path. Currently: /tikz/fit to.

package option debug=(debug category)[, (debug category)]*

Prints out some debugging info to the log file. When given no argument, prints out all the available
information, otherwise only the information on the listed (comma-separated) debug categories. The
available categories are listed below.

debug value nodewalks
debug value dynamics

debug value Process

3.2 Invocation

environment \begin{forest}[({config))|(tree)\end{forest}

macro \Forest [*] [(<CODﬁg>)] { (tree) }

The environment and the starless version of the macro introduce a group; the starred macro does not,
so the created nodes can be used afterwards, like in the example below. (Note that this will leave a
lot of temporary macros lying around. This shouldn’t be a problem, however, since all of them reside
in the \forest “namespace”.)

We create a
\Forest*{
[DP,name=DP,baseline
[D]
[NP]
]

We create a and merge it into a

DP VP
/\ /\ }
D NP V DP and merge it into a
/ \ \Forest*{
D NP [VP,baseline
[vl
[,replace by=DP
]
1
}

(config) is a keylist that configures the behaviour of the environment/macro. The configuration is the
first operation that the environment/macro does; it precedes even the reading of the tree specification.
Currently, (config) accepts only one key:

forest option stages=(keylist)
By default, after reading the tree specification, FOREST executes style stages. If key stages is
used in (config), (keylist) is executed instead.

23

macro \forestset{(keylist)}
Execute (keylist) (of node keys) with the default path set to /forest.

— This macro is usually used to define FOREST styles.

— Usually, no current node is set when this macro is called. Thus, executing most node keys in this place will fail. However, if
you have some nodes lying around, you can use propagator for name=(node name) to set the node with the given name as
current.

3.3 The bracket representation

A bracket representation of a tree is a token list with the following syntax:

(tree) = [(preamble)] (node)
(node) = [[(content)] [, (keylist)] [(children}]] {afterthought)
(preamble) = (keylist)
(keylist) = (key—value) [, (keylist)]
(key—value) = (key) | (key)=(value)
(children) = (node) [{children)]

The (preamble) keylist is stored into keylist register preamble. The (keylist) of a (node) is stored
into keylist option given options. (content) and (afterthought) are normally stored by prepending and
appending content’=(content) and afterthought=(afterthought) to given options, respectively; this is
customizable via content to and redefining style afterthought.

Normally, the tokens in the bracket representation are not expanded while the input is parsed. However,
it is possible to control expansion. Expansion control sequences of FOREST’s bracket parser are shown below.
Note that by default, there is no action character.

(action character)- no-expansion mode (default): nothing is expanded
(action character)+ expansion mode: everything is fully expanded
(action character)(token) expand (token)

(action character)(TEX-group) fully expand (TEX-group)

(action character)(action character) yield control;

upon finishing its job, user’s code should call \bracketResume

To customize the bracket parser, call \bracketset(keylist), where the keys can be the following.

bracket key opening bracket=(character) [
bracket key closing bracket=(character)]
bracket key action character=(character) none

— Careful when setting the opening bracket to (, as an initial (is understood as the delimiter of the optional (config)
argument of the forest environment or \Forest macro. The workaround is to either provide an empty (config) argument
(), or put some whitespace (e.g. a newline) before the tree specification.

By redefining the following two keys, the bracket parser can be used outside FOREST.

bracket key new node=(preamble)(node specification)({csname). Required semantics: create a new node given the
preamble (in the case of a new root node) and the node specification and store the new node’s
id into (csname).

bracket key set afterthought=(afterthought)(node id). Required semantics: store the afterthought in the node with

given id.

3.4 The workflow
3.4.1 Stages

FOREST does its job in several stages. The default course of events is the following;:

1. The bracket representation of the tree (§3.3) is parsed and stored in a data structure.

24

2. The keys given in the bracket representation are processed. In detail, default preamble is processed
first, then the given preamble (both in the context of the (formal) root node) and finally the keylists
given to individual nodes. The latter are processed recursively, in a depth-first, parent-first fashion.

3. Each node is typeset in its own tikzpicture environment, saved in a box and its measures are taken.

4. The nodes of the tree are packed, i.e. the relative positions of the nodes are computed so that the
nodes don’t overlap. That’s difficult. The result: option s is set for all nodes. (Sometimes, the value
of 1 is adjusted as well.)

5. Absolute positions, or rather, positions of the nodes relative to the root node are computed. That’s
easy. The result: options x and y are set.

6. The TikZ code that will draw the tree is produced and executed. (The nodes are drawn by using the
boxes typeset in step 3.)

Stage 1 collects user input and is thus “fixed”. However, the other stages, which do the actual work,
are under user’s control.

First, hooks exist between the individual stages which make it possible (and easy) to change the prop-
erties of the tree between the processing stages. For a simple example, see example (72): the manual
adjustment of y can only be done after the absolute positions have been computed, so the processing of
this option is deferred by before drawing tree. For a more realistic example, see the definition of style
GP1: before packing, outer xsep is set to a high (user determined) value to keep the xs uniformly spaced;
before drawing the tree, the outer xsep is set to Opt to make the arrows look better.

Second, the execution of the processing stages 2—6 is completely under user’s control. To facilitate
adjusting the processing flow, the approach is twofold. The outer level: FOREST initiates the processing
by executing style stages, which by default executes the processing stages 26, preceding the execution of
each but the first stage by processing the keys embedded in temporal propagators before ... (see §3.4.2).
The inner level: each processing step is the sole resident of a stage-style, which makes it easy to adjust the
workings of a single step. What follows is the default content of style stages, including the default content
of the individual stage-styles. Both nicely readable and ready to copy-paste versions are given.

style stages

for root’={
process keylist register=default preamble,
process keylist register=preamble
b
process keylist=given options
process keylist=before typesetting nodes
style typeset nodes stage {for root’=typeset nodes}
process keylist=before packing
style pack stage {for root’=pack}
process keylist=before computing xy
style compute Xy stage {for root’=compute xy}
process keylist=before drawing tree

style draw tree stage {for root’=draw tree}

\forestset{
stages/.style={

for root’={
process keylist register=default preamble,
process keylist register=preamble

1,

process keylist=given options,

process keylist=before typesetting nodes,

typeset nodes stage,

process keylist=before packing,

pack stage,

25

stage

stage

stage

stage

stage

stage

process keylist=before computing xy,
compute xy stage,
process keylist=before drawing tree,
draw tree stage
1,
typeset nodes stage/.style={for root’=typeset nodes},
pack stage/.style={for root’=pack},
compute xy stage/.style={for root’=compute xy},
draw tree stage/.style={for root’=draw tree},

Both style stages and the individual stage-styles may be freely modified by the user. Obviously, as a
style must be redefined before it is processed, stages should be redefined (using macro \forestset) outside
the forest environment; alternatively, stages can be given as the (parenthesized) optional argument of the
environment (see §3.2). A stage style can also be redefined in the preamble or in any of the keylists processed
prior to entering that stage.

Here’s the list of keys used either in the default processing or useful in an alternative processing flow.

typeset nodes
typeset nodes’

Typesets each node of the current node’s subtree in its own tikzpicture environment. The result is
saved in a box (which is used later, in the draw tree stage) and its measures are taken.

In the typeset nodes’ variant, the node box’s content is not overwritten if the box already exists.

The order in which the nodes are typeset is controlled by nodewalk style typeset nodes processing
order or, if this style is not defined, by processing order.

typeset node Typesets the current node, saving the result in the node box.

This key can be useful also in the default stages. If, for example, the node’s content is changed and
the node retypeset just before drawing the tree, the node will be positioned as if it contained the “old”
content, but have the new content: this is how the constant distance between xs is implemented in
the GP1 style.

pack The nodes of the tree are packed, i.e. the relative positions of the nodes are computed so that the
nodes don’t overlap. The result: option s is set for all nodes; sometimes (in tier alignment and for
some values of calign), the value of some nodes’ 1 is adjusted as well.

pack’ “Non-recursive” packing: packs the children of the current node only. (Experimental, use with care,
especially when combining with tier alignment.)

compute xy Computes the positions of the nodes in the subtree relative to the current node. The results
are stored into options x and y. The current node’s x and y remain unchanged.

draw tree

draw tree’ Produces and executes the TikZ code that draws the (sub)tree rooted in the current node.

The procedure uses the node boxes typeset by typeset nodes or friends. The ’ variant includes the
node boxes in the picture using \copy, not \box, thereby preserving them.

For details and customization, see §3.4.3.

draw tree box=[(TEX box)] The picture drawn by the subsequent invocations of draw tree and draw
tree’ is put into (TEX box). If the argument is omitted, the subsequent pictures are typeset normally
(the default).

process keylist=(keylist option) For each node in the entire tree, the keylist saved in (keylist option) of
the node is processed (in the context of that node).

Note that this key is not sensitive to the current node: it processes the keylists for the whole tree.
Actually, it is possible to control which nodes are visited: (keylist option) processing order is
walked if it is defined, otherwise processing order. In both cases, the processing nodewalk starts
at the formal root of the tree (see root’ and set root), which is reevaluated at the beginning of
each internal cycle (see below). By default, (keylist option) processing order is indeed undefined,
while the processing order defauls to tree, which means that all the nodes in the entire tree are
processed.

26

Keylist-processing proceeds in cycles. In a given cycle, the value of option (keylist option name) is
processed for every node visited by the processing nodewalk. During a cycle, keys may be delayed
using key delay. Keys delayed in a cycle are processed in the next cycle. The number of cycles in
unlimited.

Dynamic creation of nodes happens between the cycles. The options given to the dynamically created
nodes are implicitely delayed and thus processed at the end of the next cycle.

This key is primarily intended for use within stages. The calls of this key should not be nested, and
it should not be embedded under process keylist’ or process keylist register.

When changing the processing nodewalk, note that delayed keys will be executed only for nodes
visited by the processing nodewalk. Delayed spatially propagated keys will be remembered, though,
and executed when the given keylist is processed for the target node. Using spatial propagators
without delaying cannot result in a non-processed key.

process keylist’=(keylist option)(nodewalk)
This key is a variant of process keylist. The differences are as follows.

The processing nodewalk is given explicitely (by (nodewalk)) and starts at the current node (in each
internal cycle).

There is no dynamic creation of nodes between the delay cycles. Any dynamic node instructions
will be remembered and executed after the next cycle of process keylist, or an explicit call to do
dynamics.

It is safe to embed this key within process keylist and (all) friends.

process keylist’’=(keylist option)(nodewalk)

This key is a variant of process keylist which executes neither dynamic node operations nor delayed
keys (there are thus no internal cycles). Any delayed keys will not be processed during the execution
of this key. They will be remembered and executed at the end of the next cycle of process keylist
or process keylist’.

As for process keylist’, the processing nodewalk is given explicitely (by (nodewalk)) and starts at
the current node.

It is safe to embed this key within process keylist and (all) friends.

process keylist register=(register)
Process the keylist saved in (register) in the context of the current node.

Any delayed keys will not be processed during the execution of this key. They will be remembered
and executed at the end of the next cycle of process keylist or process keylist’.

It is safe to embed this key within process keylist or process keylist’.

process delayed=(nodewalk) Process delayed keys.
Keylist delay cannot be processed using process keylist or process keylist’. Thus this key.

Like process keylist or process keylist’, this key uses internal cycles. Thus, any embedded
delays will be processed.

There is no dynamic creation of nodes between the delay cycles. Any dynamic node instructions will
be remembered and executed after the next cycle of process keylist or process keylist’, or an
explicit call to do dynamics.

This key is safe to use within process keylist, process keylist’ and process keylist register.

nodewalk style processing order/.nodewalk style=(nodewalk) tree

Redefine this style to change the default order in which process keylist processes a keylist option.
For example, to process the nodes in a child-first fashion, write

processing order/.nodewalk style=tree children first

Note that this is a nodewalk style, so it must be defined either using . style handler during a nodewalk
or using .nodewalk style.

27

nodewalk style

propagator

propagator

propagator

propagator

propagator

propagator

(keylist option) processing order/.nodewalk style=(nodewalk) processing order

Redefine this style to change the process keylist processing order for a specific (keylist option). For
example, to process before drawing tree options in the child-first fashion, leaving the processing
of other before ... keylists untouched, write

before drawing tree processing order/.nodewalk style=tree children first

do dynamics Experimental. Perform pending dynamic tree operations.

Do not use this key within process keylist or process keylist’.

3.4.2 Temporal propagators

Temporal propagators delay processing of given keys until some other point in the processing of the tree.
There are three kinds of temporal propagators. Most of the propagators have the form before ... and
defer the processing of the given keys to a hook just before some stage in the workflow (§3.4.1). before
packing node and after packing node are special as they fire during the packing stage. The delay
propagator is “internal” to the current hook: the keys in the hook are processed cyclically, and delay
delays the processing of the given keys until the next cycle.

Formally, temporal propagators are keylist options (except delay n, which is a style), so augmented
assignments are possible (§3.6.1).

All temporal propagators can be nested without limit.

— A note on typos.
By default, all keys unknown to FOREST are appended to keylist option node options The value of node options is fed to
TikZ when typesetting a node, so any typos are caught by TikZ. However, as nodes are normally typeset in stage typeset
nodes stage, any typos in keys temporally propagated past that stage will not be noticed, simply because noone will use
the value of node options where they end up (the exception being nodes which are explicitely retypeset by the user using
typeset node).
To sum up, typos in any keys temporally propagated by before packing, before packing node, after packing node,
before computing xy and before drawing tree will be silently ignored. This is probably not what you want, so double-
check everything you write there.
Using unknown to=unknown key error, it is possible to change the default behaviour. You will catch all typos if you append
the command to pack stage, as shown below. This can be done either in the tree or by \forestset.

typeset nodes stage/.append style={unknown to=unknown key error}

Of course, this makes it impossible to write simply before drawing tree={inner sep=5pt, typeset node}. Any tikz's

options must be given explicitely via node options: before drawing tree={node options={inner sep=5pt}, typeset node}.

delay=(keylist) Defers the processing of the (keylist) until the next cycle.
Internally, delay is a keylist option, so augmented operators of the (keylist) type can be used.
To check whether any keys were delayed, use conditional if have delayed.
delay n=(integer)(keylist) Defers the processing of the (keylist) for n cycles. n may be 0, and it may be
given as a pgfmath expression.
given options
When stages processing starts, this list holds the keys given by the user in the bracket representation.

before typesetting nodes=(keylist) Defers the processing of the (keylist) to until just before the nodes
are typeset.

before packing=(keylist)

before packing node=(keylist)

Defers the processing of the (keylist) given to the node to until just before/after the subtree of this
specific node is packed. Even before packing node, the (subtrees of the) children of the node have
already been packed.'®

8FOREST employs two variants of the packing algorithm: the faster one is used for (parts of) trees with uniform growth,
i.e. subtrees where grow does not change; the slower, generic variant is used in where this is not the case. Now, the fast
method works by dealing with 1 and s dimension separately, and it is able to do this for the entire (sub)tree, without needing
to invoke the packing method for its constituents. The consequence is that there is no place where before packing node could
be called meaningfully, as the node’s constituents are not packed individually, “just before packing the current node” is the
same as “just before packing the tree”, and for many nodes packing is not called anyway in the fast method. As the rationale
behind before packing node is to be able to adjust the options of the subtree based on the information gained by packing its
constituents, specifying before packing node automatically switches to the generic method.

28

propagator after packing node=(keylist) Defers the processing of the (keylist) given to the node to until just after
this specific node is packed.

\forestset{box/.style={
draw, no edge, 1=0, 1 sep=1.5ex,
calign=first, anchor=base west,
/ ‘ content format={\strut\forestoption{content}},
if n children=0{}{
after packing node={
‘ minimum width/.pgfmath=
{s("11"M) +max_x("!11")-s("!'1")-min_x("!1")},
for children/.wrap pgfmath arg={s+={##1}}{0},
typeset node}}}}
Dowuﬂoad‘ ’Tbxw \begin{forest} for tree={box} [/
[home [saso[Download] [TeX]] [aljal [joel]
[usr[bin] [share]]]
\end{forest}

home ‘ ’ usr

|
|
| saso | |alja| [joe | |bin] |share|
|

— Remember to typeset or pack the node using pack’ if you have changed options influencing the typesetting or packing
process.

propagator before computing xy=(keylist) Defers the processing of the (keylist) to until just before the absolute
positions of the nodes are computed.

propagator before drawing tree=(keylist) Defers the processing of the (keylist) to until just before the tree is drawn.

3.4.3 Drawing the tree

This section provides a detailed description of how draw tree and friends draw the tree.

First, here’s the default course of events. draw tree is called from style draw tree stage in the context
of the formal root node. It does not draw the tree directly, but rather produces TikZ code that actually does
the drawing. The tree-drawing instructions are enclosed in a tikzpicture environment and come in three
parts: the (non-phantom) nodes are drawn first, followed by edges between the drawn nodes and finally the
custom TikZ code (of all, including phantom nodes). Each of those is drawn for the entire (sub)tree of the
current node, in recursive, depth-first parent-first first-child-first order.

Most parts of the tree drawing procedure are customizable. Zooming in from the invocation of draw
tree to the keys that produce the drawing code, the customization options are as follows.

There are two ways the invocation of draw tree can differ from the default. First, draw tree can be
called within the context of any node. As a first approximation, that node will become the root of the
tree that is being drawn; for the whole truth, see draw tree method. Second, draw tree can be called
not only at draw tree stage, but any time after the nodes to be drawn have been typeset (see typeset
nodes stage) and their absolute coordinates (x and y) computed (see compute xy stage).

begin draw/.code=(toks: TEX code) \begin {tikzpicture}
end draw/.code=(toks: TEX code) \end {tikzpicture}

The code produced by draw tree is put in the environment specified by begin draw and end draw.
Thus, it is this environment, normally a tikzpicture, that does the actual drawing.

A common use of these keys might be to enclose the tikzpicture environment in a center envi-
ronment, thereby automatically centering all trees; or, to provide the TikZ code to execute at the
beginning and/or end of the picture.

Note that begin draw and end draw are not node options: they are \pgfkeys’ code-storing keys [2,
§55.4.3-4].

Repeating from (§3.4.1), there are two variants of draw tree, which differ in how they use the node
boxes created by typeset nodes: draw tree includes them using \box, so they are gone; draw tree’ uses
\copy, so they are preserved. Next, setting draw tree box will cause the tree to be drawn in the given

TEX box.
style draw tree method

This is the heart of the tree-drawing procedure: it determines which parts of the tree are drawn and
in what order. What this style does by default was already described above, but is actually best seen
from the definition itself:

29

nodewalk style
nodewalk style

nodewalk style

nodewalk style

conditional

style

draw
draw
draw

draw

draw
draw

draw tree method/.style={
for nodewalk={
draw tree nodes processing order/.try,
draw tree processing order/.retry,
processing order/.lastretry
}{draw tree node},
for nodewalk={
draw tree edges processing order/.try,
draw tree processing order/.retry,
processing order/.lastretry
}{draw tree edge},
for nodewalk={
draw tree tikz processing order/.try,
draw tree processing order/.retry,
processing order/.lastretry
Hdraw tree tikz}
1,

This style may be modified by the user, but it is and should be invoked only within draw tree, by
the package: do not execute this style directly!

The nodewalks occurring in the default definition of this style are, with the exception of processing
order, not used anywhere else in the package.

tree nodes processing order
tree edges processing order
tree tikz processing order
For each of these nodewalk styles the following holds. If it is defined, it determines which nodes /

edges / pieces of tikz code are drawn and in which order. If any of these styles is not defined, its
function is taken over by draw tree processing order. By default, none of them are defined.

tree processing order

If this nodewalk is defined, it functions as a fallback for node-, edge- and tikz-code-specific nodewalks.
If it is not defined (the default situation), it has its own fallback: processing order (which defaults
to tree).

tree node
tree node’

Draws the current node at location specified by x and y. The ’ variant draws the node even if it’s
phantom.

These keys should only be used only within the definition of draw tree method.

if node drawn=(nodewalk)(true keylist)(false keylist)

draw
draw

draw
draw

Execute (true keylist) if the node at the end of (nodewalk) was already drawn in the current invocation
of draw tree; otherwise, execute (false keylist).

tree edge
tree edge’
Draws the edge from the current node to its parent, using the information in edge path and edge.

The variant without ’> variant tries to be smart: it draws the edge only if both the current node and
its parent have been drawn in the current invocation of draw tree. (This prevents drawing the edge
from the root node and edges from or to phantom nodes.) The ’ variant is dumb.

These keys should only be used only within the definition of draw tree method.

tree tikz draw tree tikz’
tree tikz’

Executes the custom code stored in option tikz of the current node.

By default, both keys execute the code without performing any checks. Specifically, tikz code of
phantom nodes is executed. To change this behaviour easily, the user can redefine draw tree tikz,
which is a style; probably, the definition will employ draw tree tikz’. For example, to execute tikz
code only if the node is not phantom, write

30

draw tree tikz/.style={if phantom={draw tree tikz’}{}}

These keys should only be used only within the definition of draw tree method.

3.5 Node keys

FOREST is mostly controlled using PGF’s key management utility pgfkeys [2, §55]. Most of the keys can
be given next to the content in the bracket representation of a tree (§3.3): we call these node keys. Some
keys, notably nodewalk steps (§3.8), must be used as arguments of specific commands.

Most node keys perform some operation on the current node. When the keylist given after the content
of a node is processed, the current node is set to that node. However, the current node can be temporarily
changed, for example by spatial propagators (§3.5.1) or, more genarally, nodewalks (§3.8).

The most common function that node keys perform is to set or modify an option of the current node
(83.6), usually to determine the appearance or position of the node and its edge (§3.7), but there are also
several kinds of more exotic keys like spatial (§3.5.1) propagators, which temporarily change the current
node, temporal (§3.4.2) propagators, which delay the processing of the keylist until some other stage in
the workflow, keys that dynamically create and move nodes (§3.11), keys that control the way FOREST
processes the tree (§3.4.1) etc. Finally, users can also define their own keys, either by defining pgfkeys
styles'® [2, §55.4.4] or using FOREST’s option declaration mechanism (§3.6.3).

— The style definitions and option declarations given among the other keys in the bracket specification are local to the current
tree (but note that FOREST's keylist processing, including temporal and spatial propagation, introduces no groups). To define
globally accessible styles and options (well, they are always local to the current TEX group), use macro \forestset outside
the forest environment, e.g. in the preamble of the document. (Although \forestset(keylist) is currently equivalent to
\pgfkeys{/forest, (keylist)}, don't rely on this as it will change in some (near) future version of the package, as there is a
plan to introduce namespaces ...)

By default, unknown keys are assumed to be TikZ keys and are forwarded to node options. This
behaviour can be changed using unknown to.

The following subsections list the node keys which are not described elsewhere (see above): spatial
propagators (§3.5.1) and general-purpose node keys, i.e. those which don’t deal with tree formatting (§3.5.2).

3.5.1 Spatial propagators

Spatial propagators pass the given (keylist) to other node(s) in the tree.
Spatial propagation does not change the current node: after visiting the nodes the keys are propagated
to, a spatial propagator (silently, using a so-called fake step) returns to the origin of the embedded nodewalk.
FOREST provides many spatial propagators. Almost all of them are built from long-form nodewalk steps
using prefix for. This is why the list below is so short: it only documents this prefix and the exceptions.
For the list of nodewalk steps, see §3.8, in particular §3.8.2 for single-step keys and §3.8.3 for multi-step
keys.

propagator for (step)=(argi)...(arg,)(keylist: every-step)

propagator for nodewalk=(nodewalk)(keylist: every-step)
propagator for Nodewalk=(keylist: config)(nodewalk)(keylist: every-step)

Walks the (single- or multi-step) (step) from the current node and executes the given (keylist) at
every visited node. The current node remains unchanged.

(step) must be a long-form nodewalk step. If it has any arguments, they ({arg;)...(arg,)) should
be given before every-step (keylist), with two exceptions: embedded nodewalk steps (Nodewalk and
nodewalk) already require the (keylist: every-step) argument, so it should be omitted, as it makes no
sense to provide the every-step keylist twice.

Examples:
e for parent={1 sep+=3mm}
e for n=2{circle,draw}
e for nodewalk={uu2}{blue}

e for tree={s sep+=lem}

9Styles are a feature of the pgfkeys package. They are named keylists, whose usage ranges from mere abbreviations
through templates to devices implementing recursion. To define a style, use PGF’s handler .style [2, §55.4.4]: (style
name)/.style=(keylist).

31

Here’s the big list of all spatial propagators built with prefix for: for -level, for -level’, for
ancestors, for branch, for branch’, for c-commanded, for c-commanders, for children, for
children reversed, for current, for current and ancestors, for current and following
nodes, for current and following siblings, for
current and following siblings reversed, for current and preceding nodes, for current
and preceding siblings, for current and preceding siblings reversed, for current and
siblings,

for current and siblings reversed, for descendants, for descendants breadth-first, for
descendants breadth-first reversed, for descendants children-first, for descendants
children-first reversed, for descendants reversed, for filter, for first, for first
leaf, for first leaf’, for following nodes, for following siblings, for following
siblings reversed, for group, for id, for last, for last dynamic node, for last leaf, for
last leaf’, for leaves, for level, for level reversed, for level reversed<, for , for
level<, for , for load, for max, for maxs, for min, for mins, for n, for n’, for name,
for next, for next leaf, for next node, for next on tier, for Nodewalk, for nodewalk,
for nodewalk’, for origin, for parent, for preceding nodes, for preceding siblings, for
preceding siblings reversed, for previous, for previous leaf, for previous node, for
previous on tier, for relative level, for relative level reversed, for relative level
reversed<, for , for relative level<, for , for reverse, for root, for root’, for save,
for save append, for save prepend, for sibling, for siblings, for siblings reversed, for
sort, for sort’, for to tier, for tree, for tree breadth-first, for tree breadth-first
reversed, for tree children-first, for tree children-first reversed, for tree reversed,
for unique, for walk and reverse, for walk and save, for walk and save append, for walk
and save prepend, for walk and sort, for walk and sort’. For details on nodewalk steps, see
§3.8.

propagator for tree’=(keylist 1)(keylist 2) A “combination” of for tree children-first and for tree.

Passes the keylists to the current node and its the descendants. At each node, the (keylist 1) is
processed first; then, children are processed recursively; finally, (keylist 2) is processed.

For an example, see the definition of draw brackets from linguistics.

propagator for 17 ey for 9=<k€yllSt>
propagator for —1, ey for —9=(keylist>
Although for normally cannot precede short forms of steps, an exception is made for 1, ..., 9. (These

keys will work even if the short steps are redefined.)

for n passes the (keylist) to the nth child of the current node. for -n starts counting at the last
child.

Nodewalk=(keylist: config)(nodewalk)(keylist: every-step)
Configures and executes the (nodewalk). This key is a nodekey-space copy of nodewalk step Nodewalk.

— Use this key carefully as it can change the current node!

— The envisioned purpose of this key is to change the current node within the every-step keylist of (an outer) nodewalk, where
only node keys are accepted. The config defaults (independent every-step, shared history) are set to facilitate that purpose.
But it can also be used as a simple node key, of course.

node walk=(node walk) Deprecated!!! Requires compat=1.0-nodewalk. Please use for nodewalk in
new code. From the old documentation:

This is the most general way to use a (node walk).

Before starting the (node walk), key node walk/before walk is processed. Then, the
(step)s composing the (node walk) are processed: making a step (normally) changes the
current node. After every step, key node walk/every step is processed. After the walk,
key node walk/after walk is processed.

node walk/before walk, node walk/every step and node walk/after walk are pro-
cessed with /forest as the default path: thus, FOREST’s node keys can be used normally
inside their definitions.

— Node walks can be tail-recursive, i.e. you can call another node walk from node walk/after walk — embedding
another node walk in node walk/before walk or node walk/every step will probably fail, because the three node
walk styles are not saved and restored (a node walk doesn't create a TEX group).

32

— every step and after walk can be redefined even during the walk. Obviously, redefining before walk during the
walk has no effect (in the current walk).

3.5.2 Various

style afterthought=(toks) Provides the afterthought explicitely.

This key is normally not used by the end-user, but rather called by the bracket parser. By default,
this key is a style defined by afterthought/.style={tikz+={#1}}: afterthoughts are interpreted as
(cumulative) TikZ code. If you'd like to use afterthoughts for some other purpose, redefine this style
— this will take effect even if you do it in the tree preamble.

also=(keylist) Execute the keys in the given (keylist).

If we are currently processing node keys, (keylist) should contain node keys. If we are in a nodewalk,
(keylist) should (or rather, may also) contain nodewalk keys.

For example, to execute, during a nodewalk, a nodewalk keylist stored in register tempkeylista,
write also/.register=tempkeylista. Note that no embedded nodewalk will be introduced.

autoforward=(option)(keylist), autoforward register=(register)(keylist)
autoforward’=(option)(keylist), autoforward register’=(register) (keylist)

Whenever the value of an autoforwarded option or register is given or changed (via an augmented
assignment), (option)=(new value) or (register)=(new value) is appended to (keylist). This can be
used to “intercept and remember” TikZ options, like anchor and rotate.

The autoforward’ variant keeps only a single instance of (option) in (keylist).

If you ever need to use the non-forwarded version of the key, prefix it with word autoforwarded, e.g.

autoforwarded rotate. Autoforwarding is limited to the current TEX group.
Autoforward=(option)(style definition), Autoforward register=(register)(style definition)

This is a more generic variant of autoforwarding. After the value of an option or register autoforwarded
with this key is changed, the style defined by (style definition) is called with the new option/register
value as its argument.

red \forestset{Autoforward={content}{node options={#1}}} (56)
// \begin{forest}
[red[blue] [green]]
blue \end{forest}

unautoforward=(option or register) Undoes the autoforwarding of the option or register made by any of
the autoforwarding keys.

content to=(key) When parsing the bracket representation of the tree, store the given content using
(key)=(content).
copy command key=(pgfkey: source)(pgfkey: destination)
Copies the pgf key in a way that .add code and .add style handlers still work.
register default preamble=(keylist) {r
register preamble=(keylist)
These registers hold the content of the default preamble and the preamble of the current tree.

preamble is set by the bracket parser. Set default preamble outside the forest environment using
\forestset.

As default preamble and preamble are not styles but keylist registers, the # characters do not
need to be doubled: you can freely copy and paste your keylists between the node options of the root
node, the preamble and the default preamble. The only difference will be the order of execution: first
default preamble, then preamble, and finally the root node’s options.

save and restore register=(register)(keylist)

Restores the current value of (register) after executing the (keylist).

split=(toks)(separator)(keylist)

33

split option=(option)(separator)(keylist)

split register=(register)(separator)(keylist)

Split (toks) or the value of (option) or (register) at occurrences of (separator) (which must be a single
token), and process the keys in (keylist) with the pieces of the split token list as arguments, in the
order given.

(option) can be either a simple (option name) or a (relative node name). (option name).

The difference in the number of split values and given keys is handled gracefully. If there is not
enough values, the superfluous keys are not processed; if there are too many values, the last key is
called repeatedly.

The keys in (keylist) can be any valid keys, including augmented assignments, non-current option
assignments, even TeX or user-defined styles. Actually, as split works by simply appending ={{current
value)} to the relevant given key, it is possible for the key to be a (sub)keylist ending in a simple,
non-valued key, like shown below.

Pay attention to 7 characters around the subkeylist. In order for it to actually function as a sublist, its braces should be
stripped, but this can only happen if no spaces surround it.

\begin{forest}
[
{1,2,3,4}
[,delay={
split option=
{!parent.content}
{3
{
content’,
{content+={+},content+}/
14-2+344=10 },
tempcounta’/.process={0+n}{content},
content+={=},
content+/.register=tempcounta,
}
]
]
\end{forest}

1,2,3,4

TeX=(toks: TEX code) The given code is executed immediately.

This can be used for e.g. enumerating nodes:

\newcount\xcount
\begin{forest} GP1,
delay={TeX={\xcount=0},
where tier={x}{TeX={\advance\xcounti},

T, (0] ?, 0] T, content/.expanded={##1$_{\the\xcount}$}+{}}
[
N N\ N [0[x[£]]]
R TR S N A [RIN[x[0]11]
‘2 ‘3 ‘4 ‘5 ‘6 7 [0[x[r]]]
o r e s t [RIN[x[e]1][x[s]]1]
[0[x[t]1]1]
[RIN[x]]]
]
\end{forest}

TeX’=(toks: TEX code) This key is a combination of keys TeX and TeX’’: the given code is both executed

and externalized.

TeX’’=(toks: TEX code) The given code is externalized, i.e. it will be executed when the externalized images

are loaded.

The image-loading and TeX’ (’) produced code are intertwined.

34

(57)

(58)

typeout=(toks) A FOREST version of KTEX macro \typeout. Useful for debugging, trust me on this one.

unknown to=(key) Forward unknown keys to (key). node options

— Do not use handler .unknown to deal with unknown keys, as it is used internally by FOREST, and is set up to make it possible
to set options of non-current nodes (see §3.6.1).

unknown key error=(keyval) Produces an error.

Write unknown to=unknown key error to produce an error when a key unknown to FOREST is used.

3.6 Options and registers

FOREST introduces two types of data storage: node options (or just options for short) and registers.
Options store data related to particular nodes. Each node has its own set of option values, i.e. the value
of an option at some node is independent of its value at other nodes: in particular, setting an option of a
node does not set this option for the node’s descendants. Register values are not associated to nodes.
Note that option and register keys share the same “namespace” (pgfkeys path and pgfmath function
names) so it is not possible to have an option and a register of the same name!

3.6.1 Setting
The simplest way to set the value of an option or a register is to use the key of the same name.

assignment (Option)=(value) Sets the value of (option) of the current node to (value).

Note that option types (keylist) and (autowrapped toks) redefine this basic key.

assignment (register)=(value) Sets the value of (register) to (value).

Note that register types (keylist) and (autowrapped toks) redefine this basic key.
Options can also be set for the non-current node:

assignment (relative node name) . (option)=(value)
Sets the value of (option) of the node specified by (relative node name) to (value).

Notes: (i) (value) is evaluated in the context of the current node. (ii) In general, the resolution of
(relative node name) depends on the current node; see §3.15. (iii) (option) can also be an “augmented
assignment operator” (see below) or, indeed, any node key.

Additional keys for setting and modifying the value of an option or a register exist, depending on its data
type. Informally, you can think of these keys as augmented operators known from various programming
languages.

type (toks) contains TEX’s (balanced text) [1, 275].
A toks (option) additionally defines the following keys:

augmented assignment (Option)+=(toks) appends the given (toks) to the current value of the option.

augmented assignment +{option)=(toks) prepends the given (toks) to the current value of the option.

type (autowrapped toks) is a subtype of (toks) and contains TEX’s (balanced text) [1, 275].

(option)=(toks) of an autowrapped (option) is redefined to (option)/.wrap value=(toks) of a normal
(toks) option.

Keyvals (option)+=(toks) and +(option)=(toks) are redefined to (option)+/.wrap value=(toks) and
+(option)/.wrap value=(toks), respectively. The normal toks behaviour can be accessed via keys
(option)’, {option)+’, and +(option)’.

type (keylist) is a subtype of (toks) and contains a comma-separated list of (key)[=(value)] pairs.

Augmented assignment operators (option)+ and +(option) automatically insert a comma before/after
the appended/prepended material.

Augmented assignment operator (option)-=(keylist) deletes the keys from keylist (option). (keylist)
specifies which keys to delete. If a key is given no value, all occurrences of that key will be deleted. If
a key is given a value, only occurrences with that value will be deleted. To delete occurrences without

35

type

augmented assignment

augmented assignment <OptiOIl
augmented assignment <

augmented assignment <OptiOIl

type

type

macro
macro
macro

macro

value, use special value \forestnovalue. (Note: if you include a key in (keylist) more than once,
only the last occurrence counts.)

(option)=(keylist) of a keylist option is redefined to (option)+=(keylist). In other words, keylists
behave additively by default. The rationale is that one usually wants to add keys to a keylist. The
usual, non-additive behaviour can be accessed by (option)’=(keylist).

Manipulating the keylist option using augmented assignments might have the side-effect of adding an
empty key to the list.
(dimen) contains a dimension.

The value given to a dimension option is automatically evaluated by pgfmath. In other words,
(option)=(value) is implicitly understood as (option)/.pgfmath=(value).

For a (dimen) option (option), the following additional keys (“augmented assignments”) are defined:

option)+=(value) is equivalent to (option)=(option) ()+(value)
)-=(value) is equivalent to (option)=({option) () -(value)
option)*=(value) is equivalent to (option)=(option) () *(value)
) :=(value) is equivalent to (option)=(option) () /(value)

The evaluation of (pgfmath) can be quite slow. There are two tricks to speed things up if the
(pgfmath) expression is simple, i.e. just a TEX (dimen):

1. pgfmath evaluation of simple values can be sped up by prepending + to the value [2, §62.1];

2. use the key (option)’=(value) to invoke a normal TEX assignment.
The two above-mentioned speed-up tricks work for the augmented assignments as well. The keys for
the second, TEX-only trick are: >+, >~ >*, >: — note that for the latter two, the value should be an
integer.

(count) contains an integer.

The additional keys and their behaviour are the same as for the (dimen) options.

(boolean) contains 0 (false) or 1 (true).

In the general case, the value given to a (boolean) option is automatically parsed by pgfmath (just
as for (count) and (dimen)): if the computed value is non-zero, 1 is stored; otherwise, 0 is stored.
Note that pgfmath recognizes constants true and false, so it is possible to write (option)=true and
(option)=false.

If key (option) is given no argument, pgfmath evaluation does not apply and a true value is set. To
quickly set a false value, use key not (option) (with no arguments).

3.6.2 Reading

Option and register values can be accessed using the four macros listed below, handlers .option and
.register (§3.12) and pgfmath functions (3.18).

\forestoption{(option)}
\foresteoption{(option)}
\forestregister{(register)}
\foresteregister{(register)}
These macros expand to the value of the given option or register. Note that \forestoption and

\foresteoption expand to the value of the given option of the current node; to access option values
of a non-current node, use pgfmath functions.

In the context of \edef, \forestoption and \forestregister expand precisely to the token list of
the option value, while \foresteoption and \foresteregister fully expand the value.

— These macros can be useful in TEX code introduced by TeX or PGF's handler . expanded [2, §55.4.6].

36

register

register

register

register

register

option

3.6.3 Declaring

Using the following keys, users can also declare their own options and registers. The new options and
registers will behave exactly like the predefined ones.

Note that the declaration of an option must provide a default value, while the declaration of a register
must not do that (registers are initialized to the empty string, Opt or 0, as appropriate for the type). The
default value of an option will be assigned to any newly created nodes; the existing nodes are not affected.

declare toks=(option name)(default value) Declares a (toks) option.
declare autowrapped toks=(option name)(default value) Declares an (autowrapped toks) option.
declare keylist=(option name)(default value) Declares a (keylist) option.

declare dimen=(option name)(default value) Declares a (dimen) option. The default value is processed by
(forestmath).

declare count=(option name)(default value) Declares a (count) option. The default value is processed by
(forestmath).

declare boolean=(option name)(default value) Declares a (boolean) option. The default value is processed
by (forestmath).

declare toks register=(register name) Declares a (toks) register.

declare autowrapped toks register=(register name) Declares an (autowrapped toks) register.
declare keylist register=(register name) Declares a (keylist) register.

declare dimen register=(register name) Declares a (dimen) register.

declare count register=(register name) Declares a (count) register.

declare boolean register=(register name) Declares a (boolean) register.

Several scratch registers are predefined:
temptoksa, temptoksb, temptoksc, temptoksd Predefined (toks) registers.
tempkeylista, tempkeylistb, tempkeylistc, tempkeylistd Predefined (keylist) registers.

tempdima, tempdimb, tempdimc, tempdimd, tempdimx, tempdimy, tempdiml, tempdims, tempdimxa,
tempdimya, tempdimla, tempdimsa, tempdimxb, tempdimyb, tempdimlb, tempdimsb Predefined
(dimen) registers.

tempcounta, tempcountb, tempcountc, tempcountd Predefined (count) registers.

tempboola, tempboolb, tempboolc, tempboold Predefined (boolean) registers.

3.7 Formatting the tree
3.7.1 Node appearance

The following options apply at stage typeset nodes. Changing them afterwards has no effect in the normal
course of events.
align=left|center|right | (toks: tabular header) {3

Creates a left/center/right-aligned multiline node, or a tabular node. In the content option, the lines
of the node should separated by \\ and the columns (if any) by &, as usual.

The vertical alignment of the multiline/tabular node can be specified by option base.

37

special value actual value \begin{forest} 1 sepr=2ex . 59
Toft o(J1e{} [special value&actual value\\\hline
\indexdef{value of=align>left}&||\texttt{@\{\}1@\{\}}\\
center o{}ce{} . .
right o{}re{} \indexdef{value of=align>center}&||\texttt{@\{\}c@\{\}}\\
\indexdef{value of=align>right}&||\texttt{@\{\}re\{\}}\\

,align=11,draw
[top base\\right aligned, align=right,base=top]

left aligned [left aligned\\bottom base, align=left,base=bottom]

top base bottom base]
right aligned \end{forest}

Internally, setting this option has two effects:

1. The option value (a tabular environment header specification) is set. The special values left,

center and right invoke styles setting the actual header to the value shown in the above
example.

— If you know that the align was set with a special value, you can easily check the value using if in align.

2. Option content format is set to the following value:

\noexpand\begin{tabular}[\forestoption{base}]{\forestoption{align}}/
\forestoption{content}/
\noexpand\end{tabular}/

As you can see, it is this value that determines that options base, align and content specify
the vertical alignment, header and content of the table.

option base=(toks: vertical alignment) t

This option controls the vertical alignment of multiline (and in general, tabular) nodes created with
align. Its value becomes the optional argument to the tabular environment. Thus, sensible values
are t (the top line of the table will be the baseline) and b (the bottom line of the table will be the

baseline). Note that this will only have effect if the node is anchored on a baseline, like in the default
case of anchor=base.

For readability, you can use top and bottom instead of t and b. (top and bottom are still stored as
t and b.)

option content=(autowrapped toks) The content of the node. {3}

Normally, the value of option content is given implicitely by virtue of the special (initial) position of
content in the bracket representation (see §3.3). However, the option also be set explicitely, as any
other option.

\begin{forest} (60)
C delay={for tree={

//// \\\ if n=1{content=L}

L R {if n’=1{content=R}

//I \\ //‘ \\ {content=C}}}}

L ¢ R L C R CCOI0a0110000110111
\end{forest}

Note that the execution of the content option should usually be delayed: otherwise, the implicitely
given content (in the example below, the empty string) will override the explicitely given content.

\begin{forest} (61)

for tree={
/// \\\ if n=1{content=L}

{if n’=1{content=R}

//Y\\ //Y\\ {content=C}}}
(C0a01cm;annia

\end{forest}

38

option content format=(toks) \forestoption {content}

When typesetting the node under the default conditions (see option node format), the value of this
option is passed to the TikZ node operation as its (text) argument [2, §16.2]. The default value of
the option simply puts the content in the node.

This is a fairly low level option, but sometimes you might still want to change its value. If you do
so, take care of what is expanded when. Most importantly, if you use a formatting command such as
\textbf in the default setting of node format, be sure to precede it with \noexpand. For details,
read the documentation of option node format and macros \forestoption and \foresteoption;
for an example, see option align.

math content Changes content format so that the content of the node will be typeset in a math envi-

ronment.

plain content Resets content format to the default value.

option node

node

option node

format=(toks) \noexpand\node (\forestoption{name})
[\forestoption{node options}]{\foresteoption{content formatl}};

The node is typeset by executing the expansion of this option’s value in a tikzpicture environment.

Important: the value of this option is first expanded using \edef and only then executed. Note that
in its default value, content format is fully expanded using \foresteoption: this is necessary for
complex content formats, such as tabular environments.

This is a low level option. Ideally, there should be no need to change its value. If you do, note that
the TikZ node you create should be named using the value of option name; otherwise, parent—child
edges can’t be drawn, see option edge path.

format’=(toks)

Sets node format, automatically wrapping the given (toks) by \noexpand\node (\forestoption{name})

and ;. Only the node options and content must therefore be given.

options=(keylist) anchor=base
When the node is being typeset under the default conditions (see option node format), the content
of this option is passed to TikZ as options to the TikZ node operation [2, §16].

This option is rarely manipulated manually: almost all options unknown to FOREST are automatically
appended to node options. Exceptions are (i) label and pin, which require special attention in order
to work; and (ii) anchor, which is saved in order to retain the information about the selected anchor.

(o]
T
% \begin{forest}
§ for descendants={anchor=east,child anchor=east},
_c? grow=west,anchor=north,parent anchor=north,
,anchor=east, fill=yellow,draw=red,fill=white & 1 sep=1lcm,
g for tree={fill=yellow},where={n()<=3}{draw=red}{},
_‘5 delay={for tree={content/.pgfmath=node_options}}
,anchor=east,fill=yellow,draw=red 5 [root,rotate=90,
i [,fill=white]
,anchor=east,fill=yellow g [,node options’]

e 0

] (=]

,anchor=east, fill=yellow,ellipse =5 1
*g [,node options={ellipse}]
ﬁ]
5 \end{forest}
<
Q
g
&
option phantom=(boolean) false

A phantom node and its surrounding edges are taken into account when packing, but not drawn.
(This option applies in stage draw tree.)

39

(62)

VP (63)

/ \begin{forest}
DP [vP[DP] [V’ ,phantom[V] [DP]]]
\end{forest}
VvV DP

3.7.2 Node position

Most of the following options apply at stage pack. Changing them afterwards has no effect in the normal
course of events. (Options 1, s, x, y and anchor are exceptions; see their documentation for details).

option anchor=(toks: FOREST anchor) base

While this option is saved by FOREST, it is essentially an option of TikZ’s \node command [see 2,
§16.5.1]. FOREST autoforwards it to keylist option node options, which is passed on to TikZ’s
\node command when the node is typeset. (Option anchor thus normally applies in stage typeset
nodes.)

In the TikZ code, you can refer to the node’s anchor using FOREST’s anchor anchor; this anchor is
sometimes also called the node anchor in this documentation, to distinguish it clearly from parent
and child anchors.

(toks: FOREST anchor) can be any TikZ anchor. Additionally, FOREST defines several tree hierarchy
related anchors; for details, see §3.17.

The effect of setting the node anchor is twofold:

e during packing, the anchors of all siblings are 1-aligned;

e some calign methods use node anchors (of the parent and/or certain children) to s-align the
block of children to the parent.

option calign=child|child edge|midpoint|edge midpoint|fixed angles|fixed edge angles center
first|last|center.

The packing algorithm positions the children so that they don’t overlap, effectively computing the
minimal distances between the node anchors of the children. This option (calign stands for child
alignment) specifies how the children are positioned with respect to the parent (while respecting the
above-mentioned minimal distances).

The child alignment methods refer to the primary and the secondary child, and to the primary and
the secondary angle. These are set using the keys described just after calign.

calign=child s-aligns the node anchors of the parent and the primary child.

calign=child edge s-aligns the parent anchor of the parent and the child anchor of the primary
child.

calign=first is an abbreviation for calign=child,calign child=1.
calign=last is an abbreviation for calign=child,calign child=-1.

calign=midpoint s-aligns the parent’s node anchor and the midpoint between the primary and the
secondary child’s node anchor.

calign=edge midpoint s-aligns the parent’s parent anchor and the midpoint between the primary
and the secondary child’s child anchor.

calign=center is an abbreviation for
calign=midpoint, calign primary child=1, calign secondary child=-1.

center \begin{forest} (64)
//// \\\\ [center,calign=center[1]
17 first 3 4 5 6 last ~ 8 [first,calign=first[A] [B] [C]] [3] [4] [5] [6]
[N\ vl [last,calign=last [A] [B] [C1] [8]]
A B C A B C \end{forest}

calign=fixed angles: The angle between the direction of growth at the current node (specified by
option grow) and the line through the node anchors of the parent and the primary/secondary
child will equal the primary/secondary angle.

To achieve this, the block of children might be spread or further distanced from the parent.

40

calign=fixed edge angles: The angle between the direction of growth at the current node (specified
by option grow) and the line through the parent’s parent anchor and the primary/secondary
child’s child anchor will equal the primary/secondary angle.

To achieve this, the block of children might be spread or further distanced from the parent.

\begin{forest}
calign=fixed edge angles,

CP calign primary angle=-30,calign secondary angle=60,
60 for tree={1=2cm}
-30 [cp[c][TP]]
\draw[dotted] (!1) -| coordinate(p) O (12) -| O;
G P \path ()--(p) node[pos=0.4,left,inner sep=1pt]{-30};

\path ()--(p) nodel[pos=0.1,right,inner sep=1pt]{60};
\end{forest}

calign child=(count) is an abbreviation for calign primary child=(count).

option calign primary child=(count) Sets the primary child. (See calign.) 1
(count) is the child’s sequence number. Negative numbers start counting at the last child.

option calign secondary child=(count) Sets the secondary child. (See calign.) -1

(count) is the child’s sequence number. Negative numbers start counting at the last child.

calign angle=(count) is an abbreviation for: calign primary angle=-(count), calign secondary
angle=(count).

option calign primary angle=(count) Sets the primary angle. (See calign.) -35

option calign secondary angle=(count) Sets the secondary angle. (See calign.) 35

calign with current s-aligns the node anchors of the current node and its parent. This key is an abbre-
viation for:

for parent/.wrap pgfmath arg={calign=child,calign primary child=##1}{n}.

calign with current edge s-aligns the child anchor of the current node and the parent anchor of its
parent. This key is an abbreviation for:

for parent/.wrap pgfmath arg={calign=child edge,calign primary child=##1}{n}

option fit=tight|rectangle|band tight

This option sets the type of the (s-)boundary that will be computed for the subtree rooted in the

node, thereby determining how it will be packed into the subtree rooted in the node’s parent. There

are three choices:?°

e fit=tight: an exact boundary of the node’s subtree is computed, resulting in a compactly
packed tree. Below, the boundary of subtree L is drawn.

\begin{forest}
delay={for tree={name/.pgfmath=contentl}}
root [root
/\ [L,fit=tight, % defoult
L| R show boundary
‘ (L1] [L2] [L3]]
L1 L2 L3] [R]
\end{forest}

20Below is the definition of style show boundary. The use path trick is adjusted from TEX Stackexchange question Calling
a previously named path in tikz.
\makeatletter\tikzset{use path/.code={\tikzQ@addmode{\pgfsyssoftpath@setcurrentpath#1}
\appto\tikz@preactions{\let\tikz@actions@path#1}}}\makeatother
\forestset{show boundary/.style={
before drawing tree={get min s tree boundary=\minboundary, get max s tree boundary=\maxboundary},
tikz+={\draw[red,use path=\minboundary]; \draw[red,use path=\maxboundary];}}}

41

(65)

(66)

http://tex.stackexchange.com/questions/26382/calling-a-previously-named-path-in-tikz
http://tex.stackexchange.com/questions/26382/calling-a-previously-named-path-in-tikz

e fit=rectangle: puts the node’s subtree in a rectangle and effectively packs this rectangle; the

resulting tree will usually be wider.

root

7\

\begin{forest}
delay={for tree={name/.pgfmath=contentl}}
[root
[L,fit=rectangle,

L R show boundary
/ ‘ \ [L1][L2] [L3]]
L1 L2 13] [R]
\end{forest}

e fit=band: puts the node’s subtree in a rectangle of “infinite depth”: the space under the node
and its descendants will be kept clear.

\begin{forest}
delay={for tree={name/.pgfmath=contentl}}
[root

[L[L1] [L2][L3]]
[C,fit=band]
| \\\\\\ [R[R1] [R2] [R3]]
]
\draw[thin,red]
(C.south west)--(C.north west)
(C.north east)--(C.south east);
\draw[thin,red,dotted]
(C.south west)--+(0,-1)
(C.south east)--+(0,-1);
\end{forest}

option grow={count), grow’=(count), grow’’=(count) 270

The direction of the tree’s growth at the node.

The growth direction is understood as in TikZ’s tree library [2, §18.5.2] when using the default growth
method: the (node anchor’s of the) children of the node are placed on a line orthogonal to the current
direction of growth. (The final result might be different, however, if 1 is changed after packing or if
some child undergoes tier alignment.)

This option is essentially numeric (pgfmath function grow will always return an integer), but there
are some twists. The growth direction can be specified either numerically or as a compass direction
(east, north east, ...). Furthermore, like in TikZ, setting the growth direction using key grow
additionally sets the value of option reversed to false, while setting it with grow’ sets it to true;
to change the growth direction without influencing reversed, use key grow’’.

Between stages pack and compute xy, the value of grow should not be changed.

\begin{forest}
delay={where in content={grow}{
for current/.pgfmath=content,
3 9 1 3 9 1 content=\texttt{#1}

\|/ \I/ ,

grow’’=90 grow’ =90

grow=south

[{grow=south}

3\\

grow’=west 2 3 4

27

1

grow=east

option ignore=(boolean)

.

[{grow’=west}[1] [2] [3]
[{grow’’=903}[1][2][3]]]

— [2][3][4]
\ [{grow=east}[1][2] [3]
1 [{grow’’=90}[1][2] [3]1]11]
\end{forest}

false

If this option is set, the packing mechanism ignores the node, i.e. it pretends that the node has no
boundary. Note: this only applies to the node, not to the tree.

Maybe someone will even find this option useful for some reason ...

42

(67)

(68)

(69)

option ignore edge=(boolean) false

If this option is set, the packing mechanism ignores the edge from the node to the parent, i.e. nodes
and other edges can overlap it. (See §6.2 for some problematic situations.)

A A \begin{forest}
/N /\ (A[B[B] [B][B][BI][C
B C B C [\texttt{not ignore edgel},1x=2]]]
//// \\\\ //// \ \end{forest}
\begin{forest}
B B B B B B BB [A[B[B] [B] [B] [B]] [C
[\texttt{ignore edgel},1*=2,ignore edgel]l]
not ignore edge ignore edge \end{forest}

option 1=(dimen) The l-position of the node, in the parent’s ls-coordinate system. (The origin of a node’s ls-
coordinate system is at its (node) anchor. The l-axis points in the direction of the tree growth at the
node, which is given by option grow. The s-axis is orthogonal to the l-axis; the positive side is in the
counter-clockwise direction from 1 axis.)

The initial value of 1 is set from the standard node. By default, it equals:

1 sep + 2 - outer ysep + total height(standard node)

The value of 1 can be changed at any point, with different effects.

e The value of 1 at the beginning of stage pack determines the minimal l-distance between the
anchors of the node and its parent. Thus, changing 1 before packing will influence this process.
(During packing, 1 can be increased due to parent’s 1 sep, tier alignment, or calign methods
fixed angles and fixed edge angles.

e Changing 1 after packing but before stage compute xy will result in a manual adjustment of the
computed position. (The augmented assignment operators can be useful here.)

e Changing 1 after the absolute positions have been computed has no effect in the normal course
of events.

option 1 sep=(dimen) The minimal l-distance between the node and its descendants.

This option determines the l-distance between the boundaries of the node and its descendants, not
node anchors. The final effect is that there will be a 1 sep wide band, in the l-dimension, between
the node and all its descendants.

The initial value of 1 sep is set from the standard node and equals

height(strut) + inner ysep

Note that despite the similar name, the semantics of 1 sep and s sep are quite different.

option reversed=(boolean) false

If false, the children are positioned around the node in the counter-clockwise direction; if true, in
the clockwise direction. See also grow.

option Totate=(count) 0

This option is saved and autoforwarded to TikZ’s \node command via node options.

option s=(dimen) The s-position of the node, in the parent’s ls-coordinate system. (The origin of a node’s ls-
coordinate system is at its (node) anchor. The l-axis points in the direction of the tree growth at the
node, which is given by option grow. The s-axis is orthogonal to the l-axis; the positive side is in the
counter-clockwise direction from 1 axis.)

The value of s is computed in stage pack stage and used in stage compute xy stage, so it only makes
sense to (inspect and) change it in before computing xy and during packing (before packing node
and after packing node). Any value given before packing is overridden, and changing the value after
computing ty has no effect.

For example, consider the manual correction below. By default, B is closer to A than C because
packing proceeds from the first to the last child — the position of B would be the same if there was
no C. Adjusting s at the right moment, it is easy to center B between A and C.

43

(70)

\begin{forest}
[no manual correction of B
no manual correction of B [A[1]1[2]1[3]1[4]]

N (8]
A B C

[C[1][2] (3] [4]]

1/2/ \3\4 1/2/ \3\4 \eid{forest}

manual correction of B \begin{forest}

//// ‘ \\\\ [manual correction of B

A B C [A[1][2][3][4]]
//// \\\\ //// \\\\ [B,before computing xy={s/.average={s}{siblings}}]
1 2 3 4 1 2 3 4][0[1][2][3][4]]
\end{forest}

option s sep=(dimen)

The subtrees rooted in the node’s children will be kept at least s sep apart in the s-dimension. Note
that s sep is about the minimal distance between node boundaries, not node anchors.

The initial value of s sep is set from the standard node and equals 2 - inner xsep.

Note that despite the similar name, the semantics of s sep and 1 sep are quite different.

option tier=(toks) 83

Setting this option to something non-empty “puts a node on a tier.” All the nodes on the same tier
are aligned in the l-dimension.

Tier alignment across changes in growth direction is impossible. In the case of incompatible options,
FOREST will yield an error.

Tier alignment also does not work well with calign=fixed angles and calign=fixed edge angles,
because these child alignment methods may change the l-position of the children. When this might
happen, FOREST will yield a warning.

option Xz(dimen>
option y:(dlmen>

x and y are the coordinates of the node in the “normal” (paper) coordinate system, relative to the
root of the tree that is being drawn. So, essentially, they are absolute coordinates.

The values of x and y are computed in stage compute xy. It only makes sense to inspect and change
them (for manual adjustments) afterwards (normally, in the before drawing tree hook, see §3.4.1.)
x and y of the (formal) root node are exceptions, as they are not changed in stage compute xy.

1
2
B 3 \begin{forest}
C 4 for tree={grow’=45,1=1.5cm}
/////// [A[B] [C] [D,before drawing tree={y-=4mm}[1][2] [3] [4] [5]1] [E] [F]]
5 \end{forest}

D E/

A e

- ——F

3.7.3 Edges

These options determine the shape and position of the edge from a node to its parent. They apply at stage
draw tree.

option child anchor=(toks: FOREST anchor) See parent anchor. {

option edge=(keylist) draw

When edge path has its default value, the value of this option is passed as options to the TikZ \path
expression used to draw the edge between the node and its parent.

Also see key no edge.

44

(71)

(72)

\begin{forest} for tree={grow’=0,1=2cm,anchor=west,child anchor=west},

normal [root
none [normall
[none,no edgel

root dotted [dotted,edge=dotted]
\::\\\ [dashed, edge=dashed]
N ~ dashed [dashed,edge={dashed,red}]
Y]
dashed \end{forest}
option edge label=(toks: TikZ code) {3

When edge path has its default value, the value of this option is used at the end of the edge path
specification to typeset a node (or nodes) along the edge.

The packing mechanism is not sensitive to edge labels.

\begin{forest}
VP [ve
X [V,edge label={node[midway,left,font=\scriptsize]{head}}]
heaq/ \Compenwnt [DP,edge label={node[midway,right,font=\scriptsize]{complement}}]
VvV DP]
\end{forest}
option edge path=(toks: TikZ code) \noexpand\path [\forestoption{edgel}]

(lu.parent anchor)--(.child anchor)\forestoption{edge label};

This option contains the code that draws the edge from the node to its parent. By default, it creates
a path consisting of a single line segment between the node’s child anchor and its parent’s parent
anchor. Options given by edge are passed to the path; by default, the path is simply drawn. Contents
of edge label are used to potentially place a node (or nodes) along the edge.

When specifying the edge path, the values of options edge and edge label can be used. Furthermore,
two anchors, parent anchor and child anchor, are defined, to facilitate access to options parent
anchor and child anchor from the TikZ code.

The node positioning algorithm is sensitive to edges, i.e. it will avoid a node overlapping an edge or
two edges overlapping. However, the positioning algorithm always behaves as if the edge path had
the default value — changing the edge path does not influence the packing! Sorry. (Parent—child
edges can be ignored, however: see option ignore edge.)

edge path’=(toks: TikZ code)
Sets edge path, automatically wrapping the given path by \noexpand\path [\forestoption{edge}]
and \forestoption{edge labell;.
option parent anchor=(toks: FOREST anchor) (Information also applies to option child anchor.) {>

FOREST defines anchors parent anchor and child anchor (which work only for FOREST and not also
TikZ nodes, of course) to facilitate reference to the desired endpoints of child-parent edges. Whenever
one of these anchors is invoked, it looks up the value of the parent anchor or child anchor of the
node named in the coordinate specification, and forwards the request to the (TikZ) anchor given as
the value.

The intended use of the two anchors is chiefly in edge path specification, but they can used in any

TikZ code.
\begin{forest}
for tree={parent anchor=south,child anchor=north}
VP [vp[v] [DP]]
\path[fill=red] (.parent anchor) circle[radius=2pt];
vV DP \path[fill=blue] (!1.child anchor) circle[radius=2pt]
(12.child anchor) circle[radius=2pt];
\end{forest}

The empty value (which is the default) is interpreted as in TikZ: as an edge to the appropriate border
point. See also §3.17 for a list of additional anchors defined by FOREST.

no edge Clears the edge options (edge’={}) and sets ignore edge.

45

(73)

(74)

(75)

readonly option
readonly option

readonly option
readonly option
readonly option

readonly option

readonly option

readonly option Il

option

readonly option

3.7.4 Information about node

The values of these options provide various information about the tree and its nodes.
alias=(toks)
alias’=(toks) Sets the alias for the node’s name.
Unlike name, alias is not an option: you cannot e.g. query it’s value via a pgfmath expression.

If the given alias clashes with an existing node name, alias will yield an error, while alias’ will
silently rename the node with this name to its default value (node@(id)).

Aliases can be used as the (forest node name) part of a relative node name and as the argument to the
name step of a node walk. The latter includes the usage as the argument of the for name propagator.

Technically speaking, FOREST alias is not a TikZ alias! However, you can still use it as a “node name”
in TikZ coordinates, since FOREST hacks TikZ’s implicit node coordinate system to accept relative
node names; see §3.16.

id=(count) The internal id of the node.

level=(count) The hierarchical level of the node. The root is on level 0.

max

(
max x=(dimen
y=(
min x=(dimen

)
dimen)
)
)

min y=(dimen) Measures of the node, in the shape’s coordinate system [see 2, §16.2,§48,875] shifted so that
the node anchor is at the origin.

In pgfmath expressions, these options are accessible as max_x, max_y, min_x and min_y.

n=(count) The child’s sequence number in the list of its parent’s children.

The enumeration starts with 1. For a geometric root, n equals 0.

=(count) Like n, but starts counting at the last child.

In pgfmath expressions, this option is accessible as n_.

name=(toks) node@(id)
name’=(toks) Sets the name of the node.

The expansion of (toks) becomes the (forest node name) of the node. The TikZ node created from
the FOREST node will get the name specified by this option.

Node names must be unique. If a node with the given name already exists, name will yield an error,
while name’ will silently rename the node with this name to its default (node@(id)) value. Use an
empty argument to reset the node’s name to its default value.

n children=(count) The number of children of the node.

In pgfmath expressions, this option is accessible as n_children.

3.7.5 Various

baseline The node’s anchor becomes the baseline of the whole tree [cf. 2, §69.3.1].

In plain language, when the tree is inserted in your (normal TEX) text, it will be vertically aligned to
the anchor of the current node.

Behind the scenes, this style sets the alias of the current node to forest@baseline®@node.

Baseline at the
\begin{forest}
parent [parent,baseline,use as bounding box’
‘ [child]]
\end{forest}
and baseline at the
‘ \begin{forest}
child [parent
[child,baseline,use as bounding box’]]
\end{forest}.

Baseline at the parent and baseline at the child.

46

(76)

tikz key

option

option

option

/tikz/fit to=({nodewalk) Fits the TikZ node to the nodes in the given (nodewalk).

This key should be used like /tikz/fit of the TikZ’s fitting library [see 2, §34]: as an option to
TikZ’s node operation, the obvious restriction being that fit to must be used in the context of some
FOREST node. For an example, see footnote 8.

This key works by calling /tikz/fit and providing it with the the coordinates of the subtree’s
boundary.

The (nodewalk) inherits its history from the outer nodewalk (if there is one). Its every-step keylist is
empty.

get min s tree boundary=(cs)
get max s tree boundary=(cs)

Puts the boundary computed during the packing process into the given (cs). The boundary is in the
form of PGF path. The min and max versions give the two sides of the node. For an example, see how
the boundaries in the discussion of fit were drawn.

label=(toks: TikZ node) The current node is labelled by a TikZ node.

The label is specified as a TikZ option label [2, §16.10]. Technically, the value of this option is
passed to TikZ’s as a late option [2, §16.14]. (This is so because FOREST must first typeset the nodes
separately to measure them (stage typeset nodes); the preconstructed nodes are inserted in the big
picture later, at stage draw tree.) Another option with the same technicality is pin.

pin=(toks: TikZ node) The current node gets a pin, see [2, §16.10]. The technical details are the same as
for label.

use as bounding box The current node’s box is used as a bounding box for the whole tree.

use as bounding box’ Like use as bounding box, but subtracts the (current) inner and outer sep from
the node’s box. For an example, see baseline.

tikz=(toks: TikZ code) “Decorations.” {

The code given as the value of this option will be included in the tikzpicture environment used to
draw the tree. By default, the code is included after all nodes of the tree have been drawn, so it can
refer to any node of the tree (furthermore, relative node names can be used to refer to nodes of the
tree, see §3.15) and the code given to various nodes is appended in a depth-first, parent-first fashion.
See §3.4.3 for details and customization.

By default, bracket parser’s afterthoughts feed the value of this option. See afterthought.

3.8 Nodewalks

A nodewalk is a sequence of steps describing a path through the tree. Most steps are defined relative to
the current node, for example parent steps to the parent of the current node, and n=2 steps to the second
child of the current node, where “to make a step” means to change the current node. Thus, nodewalk
parent, parent, n=2 describes the path which first steps to the parent of the origin node, then to its
grandparent and finally to the second child of the origin’s grandparent.

The origin of the nodewalk depends on how the nodewalk is invoked. When used after the ! in a
relative node name (§3.15), the origin is the node with the name given before !; when invoked by a spatial
propagator such as for nodewalk (§3.5.1), the origin is the current node; when invoked within another
(outer) nodewalk, the origin is the current node of the outer nodewalk.

Formally, a (nodewalk) is a list of pgfkeys key—value pairs. Steps in a nodewalk are thus separated
by commas. However, FOREST also recognizes short-form steps, whose names consist of a single character
and which do not need to be separated by a comma. For example, nodewalk parent, parent, n=2 can
be concisely written as uu2. Long and short forms can be mixed freely, like this: next, uu2, previous.

Besides nodewalk keys, a (nodewalk) can also contain node keys (or even TikZ keys).?! These keys
do their usual function, but within the context of the current node of the nodewalk: parent, s=2em,

21The precise algorithm for keyname resulotion in nodewalks is as follows.

e First, FOREST searches for the given (keyname) in the /forest/nodewalk path. If found (a long-form step or a nodewalk
style), it is executed.

e Next, it is checked whether (keyname) is a sequence of short-form steps; is so, they are executed.

e Otherwise, (key) is executed in the /forest path. This includes both FOREST’s and TikZ’s keys. The latter are usually
forwarded to TikZ via node options.

47

parent, text=red sets the parent’s s to 2em and the grandparent’s text color to red. It is worth noting
that node keys include TeX, which makes it possible to execute any TEX code while nodewalking.

Some steps target a single node, like above-mentioned parent and n. Others, called multi-steps, describe
mini-walks themselves: for example children visits each child of the node in turn, and tree visits each of
the node’s descendants (including the node itself). The path of many steps is determined by the geometric
relations of the tree, or the value of some option. However, there are also keys for embedding nodewalks
(nodewalk, branch, etc.), saving and loading nodewalks, sorting them, or even re-walking the history of
steps made (like in a web browser).?? Finally, if all this is not enough, you can define your own steps, see
§3.8.8.

Each nodewalk has an associated every-step keylist: a keylist of node keys?® which get executed after
each step of the nodewalk. The every-step keylist of the current nodewalk is contained in register every
step and can be changed at any point during the nodewalk. Its value at the start of the nodewalk depends
on how the nodewalk was invoked. In most cases (e.g. nodewalk or prefix for-based spatial propagators),
it is given explicitely as an argument to the key that executes the nodewalk. However, see Nodewalk option
every step for information on how the every-step keylist of an embedded nodewalk can interact with the
every-step keylist of its parent nodewalk.

Each nodewalk step can be either real or fake. Fake steps only change the current node. Real steps
also trigger execution of the every-step keylist and update of history. Fake steps are sometimes useful as a
“computational tool”. They can be introduced explicitely using fake; some other keys (like several history
nodewalk keys, §3.8.5) introduce fake steps implicitely.

In some cases, the nodewalk might step “out of the tree”. (Imagine using parent at the root of the tree,
or n=42 at a node with less that 42 children.) Our official term will be that the nodewalk stepped on an
inwalid node; what happens formally is that the current node is changed to the node with id=0. Normally,
such an event raises an error. However, the full story is told by on invalid.

Nodewalks can be hard to follow, especially when designing styles. FOREST does its best to help. First,
it logs the nodewalk stack in case of error. Second, if package option debug=nodewalks is given, it logs
every step made.

3.8.1 Invoking (embedded) nodewalks

There are many ways to invoke a nodewalk. For example, several keys, like /tikz/fit to, and aggregate
functions (§3.14) expect a (nodewalk) argument. This section lists keys which can be used to explicitely
invoke a nodewalk.

The keys in this section can be used not only as node keys (in fact, not all of them can be used so),
but also as nodewalk keys. The latter fact means that they can be used to introduce embedded nodewalks,
which (can) have its own every-step keylist, history and on-invalid mode; for details on how these properties
of outer and embedded nodewalk can interact, see Nodewalk. There is no limit to the depth of nodewalks
embedding (nodewalk within nodewalk within nodewalk . ..).

An embedded nodewalk functions as a single, fake step of the outer nodewalk. Specifically, this means
that, while stepping through the embedded nodewalk, the every-step keylist of the outer nodewalk is not
executed. Furthermore, by default, modifying the every-step keylist of the inner walk (by manipulating
register every step) does not influence the outer nodewalk (but see option every step).

An embedded nodewalk does not count as a (real, every-step keyslist invoking) step of the outer node-
walk. After it is finished, there are two options with respect to the new current node of the outer nodewalk,?*
depending on whether the embedded nodewalk was invoked using a variant of the key with or without the
for prefix (all keys in this section have the for variant).

e For keys without the for prefix, the current node of the outer nodewalk changes, via a fake step, to
the final node visited by the embedded nodewalk. This holds even if the final node was reached as a

There are some clashes between node key and nodewalk step names. For example, 1 is both a (dimen) option and a short
form of the step to the last child. According to the rules above, the nodewalk step will take precedence in case of a clash. Use
nodewalk key options to execute a clashing node key.

22Note that nesting operation (§3.8.4) and history (§3.8.5) steps, or embedding nodewalks under these steps doesn’t work,
for most combinations, as many of them internally manipulate nodewalk history.

23When executing the every step keylist, FOREST switches into the /forest path, which makes it impossible to directly
include a nodewalk into the every-step keylist. The reason is performance. Every time a /forest/nodewalk key is not found,
the short-form nodewalk recognition algorithm is executed, and this algorithm is slow. As every step is used a lot (it is for
example used every invocation of every spatial propagator) and the keys in every step are usually node options from /forest
path, FOREST would spend way too much time checking if a given node option is actually a short-form nodewalk.

If you need to execute nodewalk keys within the every-step keylist, use node key Nodewalk.

24Even the outermost explicitly invoked nodewalks actually have the outer nodewalk. It is “static” in the sense that no
real step is ever made in it, but it has all the nodewalk properties — the current node, every step keylist register, history
and on invalid mode (error) — which can interact with the embedded nodewalk.

48

fake step and even if it is invalid (id=0). The fake step in the outer nodewalk cannot be made real,
not even by real: if you want to execute the every-step keylist of the outer nodewalk at the finishing
node of the embedded nodewalk, follow the latter by step current.

e For keys with the for prefix, the current node of the outer nodewalk remains unchanged. For this
reason, the for-prefixed keys are available as node keys (we call them spatial propagators, §3.5.1),
while the steps without this prefix are generally not, with the sole exception of Nodewalk, which I
advise to use carefully.

All steps described in this section can be prefixed by for. All of them, with or without this prefix, are
available as nodewalk keys. The list of keys from this section which are available as node keys: Nodewalk,
for Nodewalk, for nodewalk; you will most often want to use the latter.

step Nodewalk=(keylist: config)(nodewalk)(keylist: every-step)
Walks an (nodewalk) starting at the current node.

This is the most generic form of embedding a nodewalk. Unlike other keys described in this subsection,
it can also be used as a node key even without the for prefix, but take care as it will, in general,
change the current node.

The (config) argument serves to specify the interaction between the outer and embedded nodewalk.
It can contain the following keys:

Nodewalk option every step={independent|inherited|shared} independent

Nodewalk option history={independent|inherited|shared} shared
The following table shows what happens to the every-step keylist and history depending on the
value of every step and history, respectively. State B is (every-step) for every step and empty
for history.

independent inherited shared
state of the outer nodewalk A A A
initial state of the inner nodewalk B A A
final state of the inner nodewalk C C C
state of the outer nodewalk A A C

As shown in the table above, argument (every-step) is used to initialize the embedded nodewalk’s
every-step keylist when it is independent of the outer nodewalk. In other cases, this argument is
ignored (use {}).

Nodewalk option on invalid={error|fake|error in real|last valid|inherited} inherited

Like on invalid, but local to this nodewalk. The additional alternative inherited (which is the
default) means to retain the current value, regardless of how it was set (by an outer nodewalk,
explicit on invalid, or the package default, error).

— Use Nodewalk if you need to execute nodewalk keys within the every-step keylist.

\begin{forest}
for 2=calign with current, for children={for descendants={circle,draw}}
every step [every step,
///// ‘ \\\\ [independent ,for nodewalk={
independent inherited shared 1,Nodewalk={every step=independent}{1l,every step=£fill,1}{},1
}{draw=red},
[CC01111]
[inherited,for nodewalk={
1,Nodewalk={every step=inherited}{1,every step=£fill,1}{},1
}{draw=red},
[CC01111]
[shared,for nodewalk={
1,Nodewalk={every step=shared}{l,every step=£fill,1}{},1
}{draw=red},
[CC0111111
\end{forest}

49

(1)

\begin{forest} (78)
mark/.style={tempcounta+=1,content+/.register=tempcounta,content+={,}},
[history:\\effect on the,align=center

[inner nodewalk
/% uncommenting this would result in an error:
% [independent, delay={for nodewalk={

eﬁiiiiﬁ?éhe VA tempcounta=0,111,
VA Nodewalk={history=independent }{walk back=2}{mark, fill=yellow}
/// \\\ 7 }mark, draw=red}},
inner nodewalk outer nodewalk VA [rriii1l
‘ // \\\ [inherited\\or\\shared, align=center,delay={for nodewalk={
inherited inherited shared tempcounta=0,111,
or Nodewalk={history=inherited}{walk back=2}{mark,fill=yellow}
shared }{mark,draw=red}},

[C[111]1]
[outer nodewalk
[inherited,delay={for nodewalk={
tempcounta=0,111,
Nodewalk={history=inherited}{11}{mark,fill=yellow},
walk back=2
}{mark,draw=red}},
[CCC011111]
[shared,delay={for nodewalk={
tempcounta=0,111,
Nodewalk={history=shared}{11}{mark,fill=yellow},
walk back=2
}{mark,draw=red}},
[CCC0111111]1]
\end{forest}

step nodewalk=(nodewalk) (keylist: every-step)
This key is a shorthand for

Nodewalk={every step=independent,history=independent,on
invalid=inherited}(nodewalk)(keylist: every-step)

— for nodewalk is the most common way to explicitely invoke a nodewalk from a node keylist (the keylist immediately following
the content of the node).

step nodewalk’=(nodewalk)

This key is a shorthand for

Nodewalk={every step=inherited,history=independent,on
invalid=inherited}(nodewalk){}

— Using this key, it is easy to “temporarily change” the every step keylist of a nodewalk.

— Using for nodewalk’ is probably the easiest way to make a “trip” within a nodewalk, i.e. walk some steps but return to
their origin afterwards.

— This key (with or without the for prefix) is not available as a node key — it would make little sense there, as it has no
every-step keylist argument.

3.8.2 Single-step keys

Single-step nodewalk keys visit a single node. The behaviour in the situation when the target node does
not exist is determined by on invalid.

For each single-step key, spatial propagator for (step) is also defined. for (step)=(keylist) is equivalent
to for nodewalk={(step)}{(keylist)}. If the step takes an argument, then its for (step) propagator takes
two and the argument of the step precedes the (keylist). See also §3.5.1.

Linear order below means the order of nodes in the bracket representation, i.e. depth-first parent-first
first-child-first.

50

step

step

step

step

step

step

step

step

step

step

step

step

step

step

step

step

step

step

step

step

step

step

step

step

current an “empty” step: the current node remains the same?®

first the first child

first leaf, first leaf’ the first leaf (terminal node) of the current node’s descendants (first leaf)
or subtree (first leaf’), in the linear order

id=(id) the node with the given id; this step does not depend on the current node
last the last child
last dynamic node the last non-integrated (created/removed/replaced) node; see §3.11

last leaf, last leaf’ the last leaf (terminal node) of the current node’s descendants (last leaf) or
subtree (last leaf’), in the linear order

n=n the nth child; counting starts at 126

n’=n the nth child, starting the count from the last child

name=(name) the node with the given name or alias; this step does not depend on the current node
next the next sibling

next leaf the next node (in the linear order) which is a leaf (the current node need not be a leaf)

next node the next node of the entire tree, in the linear order

next on tier=(tier) the next node (in the linear order) on the given tier; if no tier is given, assume the
tier of the current node

origin the starting node of the nodewalk; note that the starting point does not automatically count as a
step: if you want to step on it, use this key (or current, at the beginning of the nodewalk)

parent the parent
previous the previous sibling

previous leaf the previous node (in the linear order) which is a leaf (the current node need not be a leaf)

previous node the previous node of the entire tree, in the linear order

previous on tier=(tier) the previous node (in the linear order) on the given tier; if no tier is given, assume
the tier of the current node

root the root node, i.e. the ancestor of the current node without the parent; note that this key does depend
on the current node

root’ the formal root node (see set root in §3.11); this key does not depend on the current node

sibling the sibling

(don’t use if the parent doesn’t have exactly two children ...)

to tier=(tier) the first ancestor of the current node (or the node itself) on the given (tier)

25While it might at first sight seem stupid to have an empty step, this is not the case. For example, using propagator for
current derived from this step, one can process a (keylist) constructed using .wrap (n) pgfmath arg(s) or .wrap value.
26Note that n without an argument is a short form of next.

51

3.8.3

Multi-step keys

Multi-step keys visit several nodes, in general. If a multi-step key visits no nodes, the current node remains

unchanged.

For each multi-step key, spatial propagator for (step) is also defined, see §3.5.1.

Many of the keys below have a reversed variant. Those keys reverse the order of children. Note that in
general, this differs from operation key reverse, which reverses the order of the entire embedded nodewalk.

Linear order below means the order of nodes in the bracket representation, i.e. depth-first parent-first

first-child-first.

step children, children reversed

Visit all the children of the current node.

step tree, tree reversed
step tree children-first, tree children-first reversed

step tree breadth-first, tree breadth-first reversed

Visit the current node and all its descendants.

The above keys differ in the order the nodes are visited. The basic key, tree, traverses the nodes in
the depth-first, parent-first first-child-first order, i.e. the order in which they are given in the bracket
representation: so it visits the parent before its children and it visits the children from the first to the

last.

reversed variants reverse the order of children, visiting them from the last to the first (from the
viewpoint of the bracket representation).

children-first variants visit the children before the parent.

breadth-first variants behave like level steps below: they first visit level 0 nodes, then level 1

nodes etc.

2 //// \\\\ 9
3// \\6 10
A A A

12

tree children-first
12
VRN

7 11

/ N\ |
3 6 10
A ANRYA
1 2 4 5 8 9

2 ///// \\\\\ 3
4// \\5 6
AN A

10 11 12

9 8

Ji

tree reversed
N
6 2
/ N\ |
10 7 3
/NN
12 11 9 8 5 4
tree children-first reversed
12
RN
11 4
/ N\ |
10 7 3
A ANYA
6 5 2 1
tree breadth-first reversed
1
3/ \2
/N |
5 4
ANA
10 9

11 8 7

step descendants, descendants reversed

\forestset{
enumerate/.style={
tempcounta=1,
for #1={
content/.pgfmath=tempcounta,
tempcounta+=1
}
}
}
\newcommand\enumtree [1]{/
\begin{forest}
[#1,1 sep=0,for n=1{
1=0,no0 edge,delay={enumerate=#1}}
[CCd0acomiicconin
]
\end{forest}
}
\renewcommand\arraystretch{2}
\begin{tabular}{cc}
\enumtree{tree}&
\enumtree{tree reversed}\\
\enumtree{tree children-first}&
\enumtree{tree children-first reversed}\\
\enumtree{tree breadth-firstl}&
\enumtree{tree breadth-first reversed}
\end{tabular}

step descendants children-first, descendants children-first reversed

52

(79)

step

step
step
step

step

step

step

step

step
step
step
step
step
step
step

step

step

step

step

step

descendants breadth-first, descendants breadth-first reversed
Visit all the descendants of the current node.

Like the tree keys, but the current node is not visited.

relative level< , relative level , relative level> =(count)
relative level reversed<, relative level reversed, relative level reversed>=(count)
level< , level , level> =(count)
level reversed{, level reversed, level reversed>=<count>
Visits the nodes in the subtree of the current node whose level (depth) is less than or equal to, equal
to, or greater than or equal to the given level.
The relative variants consider the level as relative to the current node: relative level of the current
node is 0; relative level of its children is 1, of its grandchildren 2, etc. The absolute variants consider
the depth with respect to the (geometric) root, i.e. as returned by node option level.
The nodes are traversed in the breadth-first order. The reversed variants reverse the order of the
children within each level, but the levels are still traversed from the highest to the deepest.
leaves
Visits all the leaves in the current node’s subtree.
-level=(count)
-level’=(count)
Visits all the nodes (count) levels above the leaves in the current node’s subtree.
preceding siblings following siblings
current and preceding siblings current and following siblings
preceding siblings reversed following siblings reversed
current and preceding siblings reversed current and following siblings reversed
siblings
current and siblings
siblings reversed
current and siblings reversed
Visit preceding, following or all siblings; visit the current node as well or not; visit in normal or
reversed order.
ancestors
current and ancestors

Visit the ancestors of the current node, starting from the parent/current node, ending at the root
node.

preceding nodes following nodes

current and preceding nodes current and following nodes

Visit all preceding or following nodes of the entire tree, in the linear order; visit the current node as
well or not.

3.8.4 Operations

Generally speaking, nodewalk operations take an input nodewalk and transform it into an output nodewalk,
while possibly also having side effects.
The most important categorization of operations is in terms of the input nodewalk:

e “Normal” keys execute the input nodewalk “invisibly”, i.e. with a every-step keylist that is initially
empty. However, even such an “invisible” nodewalk might not always be completely without effect.
For example, the effects of any node keys contained in the input nodewalk or modifications of its
(initially empty) every-step keylist will be felt.

e Most of the operation keys have the walk and ... variant, where input given nodewalk is meant
to be “visible”: it is walked directly in the context of the invoking nodewalk (specifically, with its
every-step keylist in effect).

53

step

step

step

step

step

step

step

step

step

step
step
step

step

e Some operation keys have the ... in nodewalk variant, which operates on the portion of the current
nodewalk that was already walked.

e load has no input nodewalk.

All operation keys except ... in nodewalk variants can be prefixed by for to create a spatial propagator
(§3.5.1).

The output nodewalk is always walked in the context of the invoking nodewalk. However, note that, as
mentioned above, in the case of walk and ... variants, that context can be changed during the execution
of the input nodewalk.

Trivia: save is the only operation with no output nodewalk and also the only operation with a “side
effect” (of saving the nodewalk, obviously).

For some operations (filter and branch), the every-step keylist contains instructions on how collect
the relevant information. While you can safely append and prepend to every step keylist of their input
nodewalk, you should not completely rewrite it. If you want the operations to actually work, of course.

group=(nodewalk)

Treat (nodewalk) as a single step of the (outer) nodewalk, i.e. the outer every-step keylist is executed
only at the end of the embedded nodewalk. The embedded (nodewalk) inherits history from the outer
nodewalk. Using this key is equivalent to writing

Nodewalk={every step=independent ,history=inherited}(nodewalk){}, current

reverse=(nodewalk)
walk and reverse=(nodewalk)

Visits the nodes of the given (nodewalk) in the reversed order.

unique=(nodewalk)

Walks the (nodewalk), but visits each node at most once.

filter=(nodewalk)(forestmath: condition)

Visit the nodes of the given (nodewalk) for which the given (condition) is true.

— You can safely append and prepend to every step keylist during the input (nodewalk), but you should not completely rewrite
it.

branch={(nodewalk;), ..., (nodewalk,)}
branch’={(nodewalk;), ..., (nodewalk,)}

Visit the nodes in a “cartesian product” of any number of nodewalks, where a cartesian product is
defined as a nodewalk where at every step of (nodewalk;) (1 <i < n), (nodewalk; 1) is executed.

The branch variant visits only the nodes visited by the innermost nodewalk, (nodewalk,). The
branch’ variant visits the nodes visited by all the nodewalks of the product, (nodewalk;) ...
(nodewalk,,).

For an example of each, see c-commanded and c-commanders from the linguistics library.

— You can safely append and prepend to every step keylists during the input (nodewalk)s, but you should not completely
rewrite them.

save=(toks: name)(nodewalk)
walk and save=(toks: name)(nodewalk)

Saves the given (nodewalk) under the given name.
save append=(toks: name)(nodewalk)
save prepend=(toks: name)(nodewalk)

walk and save append=(toks: name)(nodewalk)
walk and save prepend=(toks: name)(nodewalk)

Appends/prepends the given (nodewalk) to nodewalk (name).

54

step

step
step
step

step

load=(toks: name) Walks the nodewalk saved under the given name.

Note that it is node ids that are saved: loading a named nodewalk with in a context of a different
current node, or even with a tree whose geometry has changed (see §3.11) will still visit exactly the
nodes that were visited when the nodewalk was saved.

sort=(nodewalk)
sort’=(nodewalk)

walk and sort=(nodewalk)
walk and sort’=(nodewalk)

Walks the nodes of the nodewalk in the order specified by the last invokation of sort by. The sort
variants sort in the ascending order, the sort’ variants in the descending order. The walk and sort
variants first visit the nodes in the order specified by the given (nodewalk).

sort by={(forestmath),...,(forestmath)}

Sets the sorting order used by all keys comparing nodes: sort, min and max key families in the
nodewalk namespace, and the sort key family in the option namespace (dynamic tree).

For each node being ordered, an “n-dimensional coordinate” is computed by evaluating the given list
of pgfmath expressions in the context of that node.?” Nodes are then ordered by the usual sort order
for multi-dimensional arrays: the first item is the most important, the second item is the second most
important, etc.

Simply put, if you want to sort first by the number of children and then by content, say sort by={n
children, content}.

In the simplest case, the given (forestmath) expressions are simply node options. However, as any
pgfmath expression is allowed in the sort key, you can easily sort by the product of the content of the
current node and the content of its first child: sort by={content ()*content ("!1").

To sort alphabetically, one must use the argument processor (§3.13) to specify the sort order. In par-
ticular, the key must be marked as text using t. The first example below shows a simple alphabetical
sort by content; the second sorts the filenames by suffix first (in the ascending order) and then by the
basename (in the descending order, see -).

example.aux
example.log
\begin{forest}
[,phantom,grow’=0,for children={anchor=west,child anchor=west},s sep=0,
delay={sort by=>0+t{content},sort}

example.pdf

example.tex

thesis.aux [example.tex] [example.pdf] [example.log] [example.aux]
. [thesis.tex] [thesis.pdf] [thesis.log] [thesis.aux] [thesis.toc]
thesis.log]
thesis.pdf \end{forest}
thesis.tex
thesis.toc
\begin{forest}
thesis.aux declare toks={basename}{},
example.aux declare toks={extension}{},
thesis.log [,phantom,grow’=0,for children={anchor=east},s sep=0,
delay={
example.log for children={split option={contentl}{.}{basename,extension}},
thesis.pdf sort by={>0+t{extension},>0+t-{basenamel}},
example.pdf } sort,
thesis.tex [example.tex] [example.pdf] [example.log] [example.aux]
example.tex [thesis.tex] [thesis.pdf] [thesis.log] [thesis.aux] [thesis.toc]
thesis.toc]
\end{forest}

step min=(nodewalk), max=(nodewalk)

step walk and min=(nodewalk), walk and max=(nodewalk)

2"Don’t worry, lazy evaluation is used.

55

(80)

(81)

step

step

step
step

step

step
step

step

step
step

step

mins=(nodewalk), maxs=(nodewalk)

walk and mins=(nodewalk), walk and maxs=(nodewalk)
Visit the node(s) in the given (nodewalk) with a minimum/maximum value with respect to the sort
order previously specified by sort by.

Variants mins/maxs visit all the nodes that with the minimum/maximum value of the sorting key;
variants min/max visit only the first such node (first in the order specified by the given nodewalk).

min in nodewalk, max in nodewalk

mins in nodewalk, maxs in nodewalk

min in nodewalk’, max in nodewalk’
These keys search for the minimum/maximum among the nodes that were already visited in the
current nodewalk.
Keys mins in nodewalk and maxs in nodewalk visits all nodes that reach the minimum/maximum,
while keys min in nodewalk and max in nodewalk variants visit only the first such node.
Keys min in nodewalk’ and max in nodewalk’ visit the first minimal/maximal node by moving
back in the history, see back.

3.8.5 History

FOREST keeps track of nodes visited in a nodewalk and makes it possible to revisit them, in a fashion similar
to clicking the back and forward button in a web browser.
These keys cannot be prefixed by for.

back=(count: n)

jump back=(count: n)

walk back=(count: n)
Move n steps back in the history. In the back variant, all steps are fake; in the jump back variant,
the final step is real; and in the walk back variant, all steps are real.

Note that as the origin is not a part of the history, these keys will not step there (unless current was
the first step of your nodewalk). (Use origin to move to the origin of the nodewalk.)

forward=(count: n)
jump forward=(count: n)
walk forward=(count: n)

Move n steps forward in the history. In the forward variant, all steps are fake; in the jump forward
variant, the final step is real; and in the walk forward variant, all steps are real.

save history=(toks: back name)(toks: forward name)

Saves the backwards and forwards history under the given names. (Load them using load.) The
backwards history is saved in the reverse order of how it was walked, i.e. outward from the perspective
of the current position in the nodewalk.

3.8.6 Miscellaneous

The following nodewalk keys are not steps. Rather, they influence the behaviour of nodewalk steps in
various ways. The keys in this section having (nodewalk) arguments do not start a new nodewalk in the
sense of §3.8.1; the given nodewalk steps rather become a part of the current nodewalk.

register every step=(keylist) Contains the every-step keylist of the current nodewalk.

nodewalk key fake= (nodewalk)

nodewalk key real= (nodewalk)

The (nodewalk) embedded under fake consists of “fake” steps: while the current node is changed,
every-step keylist is not executed and the history is not updated.

Note that these keys do not introduce an embedded nodewalk. The given (nodewalk) will not have
its own history and every-step keylist.

real undoes the effect of fake, but cannot make real the implicitely fake steps, such as the return to
the origin in spatial propagators like for nodewalk. fake and real can be nested without limit.

56

step last valid

step last valid’

If the current node is valid, these keys do nothing. If the current node of the nodewalk is invalid (i.e.
its id is 0), they step to the last valid visited node. If there was no such node, they step to the origin
of the nodewalk.

The variant without ° makes a fake step. More precisely, it behaves as if both fake and on
invalid=fake are in effect.

nodewalk key on invalid={error|fake|step}(nodewalk)

This key determines what should happen if a nodewalk step landed on the invalid node, i.e. the node
with 1d=0.

There is a moment within the step when the current node is changed but the step itself is not yet
really done, is “still fake”, i.e. the history is not yet updated and the every-step keylist is not yet
executed. If the new current node is invalid, this key determines what should happen next.

on invalid={error}(nodewalk) produces an error;

on invalid={fake}(nodewalk) does nothing: history is not updated and the every-step keylist is not
executed, thus making the step essentialy fake;

on invalid={error if real}(nodewalk) produces an error unless fake is in effect.

on invalid={last valid}(nodewalk) returns to the last valid node, by making a fake step, like last
valid.

Loops with the implicit id=0 condition (§3.10) automatically switch to on invalid=fake mode.

See also Nodewalk option on invalid.

nodewalk key options=(keylist: node keys)

Execute the given node options in the context of the current node.

There is not much need to use this key, as any keys that are not (long) steps or sequences of short
steps are automatically used as FOREST node options any way, but there are still usage cases, for
example whenever the names of node options and (long) steps are the same, or in a style that wants
to ensure there is no overlap.

nodewalk key strip fake steps=(nodewalk)

short step

short step

short step

short step

short step

short step

short step

short step

short step

short step

If (nodewalk) ends with fake steps, return to the last node current before those steps were made. For
details, see define long step.

3.8.7 Short-form steps

All short forms of steps are one token long. When using them, there is no need to separate them by commas.
Here’s the list of predefined short steps and their corresponding long-form steps.

1,2,3,4,5,6,7,8,9 the first, ..., ninth child — n=1,...,,9
1 the last child — last

u the parent (up) — parent

p the previous sibling — previous

n the next sibling — next

s the sibling — sibling

P the previous leaf — previous leaf

N the next leaf — next leaf

F the first leaf — first leaf

L the last leaf — last leaf

o7

short step

short step

short step

short step

short step

short step

short step

short step

short step

short step

> the next node on the current tier — next on tier

< the previous node on the current tier — previous on tier

¢ the current node — current

o the origin — origin

r the root node — root

R the formal root node — root’

b back one fake step in history — back=1

f forward one fake step in history — forward=1

v last valid node in the current nodewalk, fake version — last valid
*(count: n)(keylist) repeat keylist n times — repeat=(count: n)(keylist)

{(keylist) } put keylist in a group — group=(keylist)

3.8.8 Defining steps

You can define your own steps, both long and short, or even redefine predefined steps. Note, though, that
it is not advisable to redefine long steps, as their definitions are interdependent; redefining short steps is
always ok, however, as they are never used in the code of the package.

define long step=(name)(options)(nodewalk)

Define a long-form step named (name) as equivalent to (nodewalk). (options) control the exact
behaviour or the defined step.

n args=(number) 0
make for=(boolean) true
Should we make a for prefix for the step?

strip fake steps=(boolean) true

Imagine that (nodewalk) ends with fake steps. Now, fake steps are usually just a computational
tool, so we normally wouldn’t want the current node after the walk to be one of them. As far
as the outer world is concerned, we want the node to end at the last real step. However, simply
appending last valid to our style will not work. Imagine that the nodewalk results in no steps.
In this case, we’d want to remain at the origin of our empty nodewalk. However, imagine further
that the (outer) step just before the empty nodewalk was fake. Then last valid will not step
to the correct node: instead of staying at the origin, it will go to the node that the last real step
prior to our nodewalk stepped to. In case there was no such real step, we’d even step to the
invalid node (normally getting an error).

Defining the step using strip fake steps ensures the correct behaviour described above. Set
strip fake steps=false only when the fake steps at the end of the nodewalk are important
to you.

— See also nodewalk key strip fake steps.

\forestset{
define long step={children from to}{n args=2}{
if={#1>#2}{}{n=#1,vhile={n () <#2}{next}}
root }

1 6 \begin{forest}

for children from to={2}{5}{draw}
[root[1][2] [3][4] [5] [6]1]
\end{forest}

“

58

(82)

define short step=(token: short step)(n args)(nodewalk)

Define short step taking n arguments as the given (nodewalk). Refer to the arguments in the usual
way, via #1,

To (re)define braces, {}, write define short step={group}{1}{...}.

handler .nodewalk style=(nodewalk)

(nodewalk key)/.nodewalk style=(nodewalk) is a shorthand for
for nodewalk={(nodewalk key)/.style=(nodewalk)}{}.

3.9 Conditionals

All conditionals take arguments (true keylist) and (false keylist). The interpretation of the keys in these
keylists depends on the environment the conditional appears in. If it is a part of a nodewalk specification,
the keys are taken to be nodewalk keys (§3.8), otherwise node keys (§3.5).

All the conditionals can be nested safely.

conditional if=(forestmath: condition)(true keylist)(false keylist)

If (forestmath: condition) evaluates to true (non-zero), (true keylist) is processed (in the context of
the current node); otherwise, (false keylist) is processed.

For a detailed description of pgfmath expressions, see [2, part VI]. (In short: write the usual mathe-
matical expressions.)

In the following example, if is used to orient the arrows from the smaller number to the greater,
and to color the odd and even numbers differently. (Style random tree is defined in the front page

example.)
\pgfmathsetseed{314159} (83)
\begin{forest}
before typesetting nodes={
26 for descendants={
/if>/1 SN if={content () >content ("!u")}{edge=->}{
if={content ()<content ("!u")}{edge=<-}{}2},
'\’.X 24 edge label/.wrap pgfmath arg=
;v/ \%} ¢$ {node[midway,above,sloped,font=\scriptsize] {+#1}}
12 a4 {int (abs(content () -content ("!u")))}
Nig X },
é// ¢§§Q? #E for tree={circle,if={mod(content(),2)==0}
0 ‘ ‘ ‘ {fill=yellow}{fill=green}}
}
[,random tree={3}{3}{100}]
\end{forest}

conditional 1f (option)=(value)(true keylist)(false keylist)

This simple conditional is defined for every (option) (except boolean options, see below): if (value)
equals the value of the option at the current node, (true keylist) is executed; otherwise, (false keylist).

conditional 1f (boolean option)=(true keylist)(false keylist)

Execute (true keylist) if (boolean option) is true; otherwise, execute (false keylist).

conditional 1f in (toks option)=(toks)(true keylist)(false keylist)

Checks if (toks) occurs in the option value; if it does, (true keylist) are executed, otherwise (false
keylist).

This conditional is defined only for (toks) options, see §3.6.1.

conditional 1f (dimen option)>=(value)(true keylist)(false keylist)
)<=(value)(true keylist)(false keylist)

conditional 1f (dimen option

>=(value) (true keylist)(false keylist)
<=(value) (true keylist)(false keylist)

conditional if (count option)

dimen register)>=(value)(true keylist) (false keylist)

conditional 1f

(
(
conditional 1f (count option)
(
(
conditional 1f <

dimen register)<=(value)(true keylist)(false keylist)

59

conditional

conditional

conditional

conditional

conditional

conditional

propagator

propagator

conditional
conditional
conditional
conditional
conditional
conditional
conditional
conditional
conditional
conditional
conditional
conditional
conditional
conditional

conditional

if
if

if

if

if

if

if

if

(count register)>=(value) (true keylist) (false keylist)
(count register)<=(value)(true keylist) (false keylist)

If the current value of the dimen/count option/register is greater/less than or equal to (value), execute
(true keylist); else, execute (false keylist).

nodewalk valid=(keylist: test nodewalk)(true keylist)(false keylist)
If the test nodewalk finished on a valid node, (true keylist) is processed (in the context of the current
node); otherwise, (false keylist) is processed.

nodewalk empty=(keylist: test nodewalk)(true keylist)(false keylist)
If the test nodewalk contains no (real) steps, (true keylist) is processed (in the context of the current
node); otherwise, (false keylist) is processed.

current nodewalk empty=(true keylist)(false keylist)
If the current nodewalk contains no (real) steps, (true keylist) is processed (in the context of the
current node); otherwise, (false keylist) is processed.

in saved nodewalk=(nodewalk)(toks: nodewalk name) (true keylist)(false keylist)
If the node at the end of (nodewalk) occurs in the saved nodewalk, (true keylist) is processed (in the

context of the current node); otherwise, (false keylist) is processed.

have delayed=(true keylist){false keylist) If any options were delayed in the current cycle (more pre-
cisely, up to the point of the execution of this key), process (true keylist), otherwise process (false
keylist). (delay n will trigger “true” for the intermediate cycles.)

This key assumes that the processing order of the innermost invocation of process keylist or
process keylist’ is given by processing order. If this is not the case, explicitely supply the
processing order using if have delayed’.

have delayed’=(nodewalk)(true keylist)(false keylist) Like if have delayed, but assume the process-
ing order given by (nodewalk).

The following keys are shortcuts: they execute their corresponding if ... conditional for every node

in the subtree of the current node (including the node itself). In other words:

where ...(arg;)...{(arg,)/.style={for tree={if ...=(arg;)...(arg,)}}

— Except in special circumstances, you probably don’'t want to embed keys from the where family within a for tree, as this

results in two nested loops. It is more usual to use an if family key there. For an example where using where actually does
the wrong thing, see question Smaller roofs for forest on TEX Stackexchange.

where=(value) (true keylist)(false keylist)

where (option)=(value)(true keylist)(false keylist)

where (boolean option)=(true keylist)(false keylist)

where in (toks option)=(toks)(true keylist)(false keylist)

where
where

where

where
where
where

where (count register

(
(
(
where (count option)
(
(
(

dimen option)>=(value)(true keylist)(false keylist)
dimen option)<=(value)(true keylist)(false keylist)
count option)>=(value)(true keylist) (false keylist)
<=(value) (true keylist)(false keylist)
>

dimen register)>=(value)(true keylist)(false keylist)

~ ~

=(
<=(value)(true keylist) (false keylist)
>=(value)(true keylist)(false keylist)

<=(value)(true keylist)(false keylist)

dimen register

)
)

count register

where nodewalk valid=(toks: nodewalk name)(true keylist){false keylist)

where nodewalk empty=(toks: nodewalk name)(true keylist)(false keylist)

where in saved nodewalk=(nodewalk)(toks: nodewalk name)(true keylist)(false keylist)

60

http://tex.stackexchange.com/questions/167978/smaller-roofs-for-forest

loop

loop
loop
loop

loop

tried: 15, 20, 10, 14, 20, 13, 1,

loop
loop
loop
loop
loop
loop
loop

loop

pgfmath function

3.10 Loops

All loops take a (keylist) argument. The interpretation of the keys in these keylists depends on the envi-
ronment the loop appears in. If it is a part of a nodewalk specification, the keys are taken to be nodewalk
keys (§3.8), otherwise node keys (§3.5).

All loops can be nested safely.

repeat=(number) (keylist)
The (keylist) is processed (number) times.

The (number) expression is evaluated using pgfmath.

while=(forestmath: condition)(keylist)
do while=(forestmath: condition)(keylist)
until=(forestmath: condition)(keylist)
do until=(forestmath: condition)(keylist)

while loops cycle while the condition is true, until loops terminate when the condition becomes true.

The do variants check the condition after processing the (keylist); thus, the keylist is executed at least
once. The variants without the do prefix check the condition before processing the (keylist), which
might therefore not be processed at all.

When (forestmath: condition) is an empty string, condition valid is implicitely used, and (keylist) is
implicitely embedded in on invalid=fake. Thus, the while loops will cycle until they “walk out of
the tree”, and until loops will cycle until they “walk into the tree.”

— If a loop “walks out of the tree”, you can get it back in using last valid or strip fake steps.

\pgfmathsetseed{1234} (84)
\begin{forest}
try/.style={root’,content+={#1,\ },n=#1},
delay={
.// ‘ \\ for nodewalk={do until={}{try/.pgfmath={random(1,20)}},draw}{},
2 3 4 5 },
[tried:\ [1][2][3][4][5]]
\end{forest}

while nodewalk valid=(nodewalk)(keylist)
do while nodewalk valid=(nodewalk)(keylist)
until nodewalk valid=(nodewalk)(keylist)
do until nodewalk valid=(nodewalk)(keylist)
while nodewalk empty=(nodewalk)(keylist)
do while nodewalk empty=(nodewalk)(keylist)
until nodewalk empty=(nodewalk)(keylist)
do until nodewalk empty=(nodewalk)(keylist)

(nodewalk) is embedded within on invalid=fake.

break=n Break out of the loop. 0
The loop is only exited after all the keys in the current cycle have been processed.
The optional argument n (n > 0) specifies which level of embedding to break from; the default is to
break out of the innermost loop.

forestloopcount([n]) 0
How many times has the loop repeated until now?

The optional argument n (n > 0) specifies the level of embedding to provide information for; the
default is to count the repetitions of the current, most deeply embedded loop.

61

3.11 Dynamic tree

The following keys can be used to change the geometry of the tree by creating new nodes and integrating
them into the tree, moving and copying nodes around the tree, and removing nodes from the tree.
The (node) that will be (re)integrated into the tree can be specified in the following ways:

(empty): uses the last non-integrated (i.e. created/removed /replaced) node.

— This node can also be referred to using nodewalk step last dynamic node.

— The list of all such nodes is automatically saved in named nodewalk dynamic nodes, to be loaded when needed.

(node): a new node is created using the given bracket representation (the node may contain children, i.e. a
tree may be specified), and used as the argument to the key.

The bracket representation must be enclosed in brackets, which will usually be enclosed in braces to
prevent them being parsed while parsing the “host tree.”

— Unlike the bracket representation in a forest environment, the bracket representation of a dynamically created node must
start with [. Specifically, it cannot begin with a preamble or the action character.

(relative node name): the node (relative node name) resolves to will be used.
A dynamic tree operation is made in two steps:

e If the argument is given by a (node) argument, the new node is created immediately, i.e. while the
dynamic tree key is being processed. Any options of the new node are implicitely delayed.
e The requested changes in the tree structure are actually made between the cycles of keylist processing.

— Such a two-stage approach is employed because changing the tree structure during the dynamic tree key processing would
lead to an unmanageable order of keylist processing.

— A consequence of this approach is that nested dynamic tree keys take several cycles to complete. Therefore, be careful when
using delay and dynamic tree keys simultaneously: in such a case, it is often safer to use before typesetting nodes instead
of delay, see example (85), and it is also possible to define additional stages, see §3.4.

— Examples: title page (in style random tree) and (102) (in style x1list).

Here is the list of dynamic tree keys:

dynamic tree append=({empty) | [(node)] | (relative node name)

The specified node becomes the new final child of the current node. If the specified node had a parent,
it is first removed from its old position.

\begin{forest} (85)
before typesetting nodes={for tree={
C if n=1{content=L}

/ \ {if n’=1{content=R}

L R {content=C}}}}

/1IN /1N [, repeat=2{append={[

,repeat=3{append={[]1}}
133
\end{forest}

dynamic tree create= [(node)]

Create a new node. The new node becomes the last node.

dynamic tree create’= [(node>]

Create a new node and process its given options immediately. The new node becomes the last node.

dynamic tree insert after=(empty) | [(node)] | (relative node name)
The specified node becomes the new following sibling of the current node. If the specified node had
a parent, it is first removed from its old position.

dynamic tree insert before=(empty) | [(node)] | (relative node name)

The specified node becomes the new previous sibling of the current node. If the specified node had a
parent, it is first removed from its old position.

62

dynamic tree prepend=(empty) | [(node)] | (relative node name)
The specified node becomes the new first child of the current node. If the specified node had a parent,
it is first removed from its old position.

dynamic tree remove
The current node is removed from the tree and becomes the last node.
The node itself is not deleted: it is just not integrated in the tree anymore. Removing the root node
has no effect.

dynamic tree Teplace by=(empty) | [(node)] | (relative node name)
The current node is replaced by the specified node. The current node becomes the last node.

If the specified node is a new node containing a dynamic tree key, it can refer to the replaced node
by the (empty) specification. This works even if multiple replacements are made.

If replace by is used on the root node, the “replacement” becomes the root node (set root is used).

If given an existing node, most of the above keys move this node (and its subtree, of course). Below are
the versions of these operations which rather copy the node: either the whole subtree (?) or just the node
itself (°?).

dynamic tree append’, insert after’, insert before’, prepend’, replace by’
Same as versions without ’ (also the same arguments), but it is the copy of the specified node and
its subtree that is integrated in the new place.

dynamic tree append’’, insert after’’, insert before’’, prepend’’, replace by’’
Same as versions without >’ (also the same arguments), but it is the copy of the specified node

(without its subtree) that is integrated in the new place.

— You might want to delay the processing of the copying operations, giving the original nodes the chance to process their keys
first!

dynamic tree cCOpy name template={empty) | (macro definition) (empty)

Defines a template for constructing the name of the copy from the name of the original. (macro
definition) should be either empty (then, the name is constructed from the id, as usual), or an
expandable macro taking one argument (the name of the original).

copy name template={copy of #1}

br v. P [CP,delay={prepend’=subject}
/N7 N\ [VP [DP, name=subject [D] [NP11 [V’ [V] [DP111]

CP
/ \ \begin{forest}
\%

)

b Np DP \draw[->,dotted] (subject)--(copy of subject);

v
/ \ / \ \end{forest}

D NP V DP

dynamic tree set root=(empty) | [(node)] | (relative node name)
The specified node becomes the new formal root of the tree.

Note: If the specified node has a parent, it is not removed from it. The node becomes the root
only in the sense that the default implementation of stage-processing will consider it a root, and thus
typeset/pack/draw the (sub)tree rooted in this root. The processing of keys such as for parent and
for root is not affected: for root finds the real, geometric root of the current node. To access the
formal root, use nodewalk step root’, or the corresponding propagator for root’.

dynamic tree sort, sort’ Sort the children of the current node, using the currently active sort key specified in sort by
(see §3.8.4). sort sorts in ascending and sort’ in descending order.

63

(86)

handler

handler

handler

handler

handler

handler

handler

3.12 Handlers

Handlers are a powerful mechanism of pgfkeys, documented in [3, §82.3.5]. Handlers defined by FOREST
perform a computation and invoke the handled key with its result. The simple handlers are documented in
this section: for .process, see §3.13; for aggregate function handlers, see §3.14.

.option={option)

The result is the value of (option) at the current node.

.register=(register)

The result is the value of (register).

.pgfmath=(pgfmath expression)

The result is the evaluation of (pgfmath expression) in the context of the current node.

— If you only need to access an option or register value, using .option or .register is much faster than using .pgfmath.

.wrap value=(macro definition)
The result is the (single) expansion of the given (macro definition). The defined macro takes one
parameter. The current value of the handled option will be passed as that parameter.

.wrap n pgfmath args=(macro definition)(arg 1)...(arg n)

The result is the (single) expansion of the given (macro definition). The defined macro takes n
parameters, where n € {2,...,8}. Expressions (arg 1) to (arg n) are evaluated using pgfmath and
passed as arguments to the defined macro.

.wrap pgfmath arg=(macro definition)(arg)

Like .wrap n pgfmath args would work for n = 1.

3.13 Argument processor

For a gentle(r) introduction to the argument processor, see §2.6.

The argument processor takes a sequence of instructions and an arbitrary number of arguments and
transforms the given arguments according to the instructions. This is the generic form of a process expres-
sion:

(process) = (instructions)(arg 1)... (arg n)

There are three ways to invoke the argument processor: via handler .process, as one of the two
alternatives of a (forestmath) expression and recursively, by its instruction P.

.process=(process)

The result of the computation is passed on to the handled key as a sequence of arguments. When the
argument processor is invoked this way, any number of items can be returned.??

(forestmath) = (pgfmath) | >(process)

In words, a (forestmath) expression is either a (pgfmath) expression or an argument processor expres-
sion ((process)) prefixed by >.

In other words, FOREST accepts an argument processor expression anywhere it accepts a (pgfmath)
expression.?? To indicate that we’re providing an argument processor expression, we prefix it with >.

When the argument processor is invoked this way, it should return a single item.

The syntax of argument processor is a cross between expl3’s function argument specification and a
Turing machine, spiced with a bit of reversed Polish notation. ;-)

Think of (instructions) as a program and (arg 1)...(arg n) as the data that this program operates on.

If you’re familiar with Turing machines: like a Turing machine, the argument processor has a notion of
a head; unlike a Turing machine, the argument processor head is positioned not over some argument, but
between two arguments. If you’re not familiar with Turing machines: imagine the arguments as items on a

28For backward compatibility, .process is also available as .process args.
29The only exceptions to the above rule are handler .pgfmath and argument processor instruction P.

64

+ chain instructions L (non-consuming) load

- toggle ascending/descending order (negate) < comparison: (arg;) < (arge)? R register

? conditional (if ... then ... else) n numexpr r reverse (key)list

& boolean “and” _ 1no-op s (consuming) save

c to lowercase ! boolean “not” S (non-consuming) save
C to uppercase o expand once t mark as text

d dimexpr 0 option u ungroup

= comparison: {arg;) = (args)? | boolean “or” w (consuming) wrap

> comparison: (arg;) > (args)? p process W (non-consuming) wrap
1 (consuming) load P pgfmath x fully ezpand

Table 1: Argument processor instructions

tape and the argument processor as a head that is always located between some two items. As the head is
between two arguments, we can talk about the arguments on the left and the arguments on the right.

In general, an instruction will take some items from the left and some from the right (deleting them
from the tape), perform some computation and insert the result on the tape, some result items to the left
and some to the right. However, most instructions simply take an item from the right, do something with
it, and put the (single-item) result to the left; in effect, the head is moved one item to the right. At the
beggining, all the arguments are always on the right, so the general idea is that the program will walk
through the given arguments, processing them in order.

Descriptions of individual instructions, given below, contain (at the right edge of the page) the argument
specification, which tells us about the number of input and output items and the movement of the head.
The input and output are separated by an arrow (—), and the green eye (<@) signifies the position of
the head with respect to the (input or output) items.

For example, instruction 0, which converts an option name into the option value, exemplifies the most
common scenario: it takes one argument from the right and puts the result to the left (in other words,
the head moves one item to the right). Wrapping instrucion w is more complicated. Given instruction
wn, the argument processor takes one argument from the right (the wrapping macro body) and n items
from the left (which become the arguments of the wrapping macro), and puts the resulting item to the
left. Comparisons and boolean operations are the instructions resembling the reverse Polish notation: they
take the arguments from the left and put the result to the left, as well. Finally, it is worth mentioning
instructions _ and +, which simply move the head to the right and left, respectively; given that the usual
movement of the head is to the right, + can be thought of as a process-the-argument-again instruction.

Before we finally list the available instructions, some notes:

e (Instructions) may be given in braces or not. If not, everything until the first opening brace is
considered to be an instruction.

e An argument item ({argy)) is a standard TEX macro argument: either a token or a braced token list.
(The obvious exception: (arg;) needs to be braced if it follows braceless instructions.)

e Spaces in (instructions) and between arguments are ignored. Format your .process as you wish!
e Instructions followed by [n] below take an optional numeric modifier.

— The modifier should be given within the instruction string itself, immediately following the
instruction. In particular, no spaces are allowed there. (Sorry for the little white lie above.) The
number should not be enclosed in braces, even if it is more than one digit long.

— This modifier is always optional: its default value varies from instruction to instruction. (Pro-
viding 0 means to use the default.)

— Unless noted otherwise, the optional numerical argument n instruct the argument processor to
repeat the previous instruction n times (by default, 1). For example, 03 is equivalent to 000.

process instruction ,[n] no-op @ <arg> — <arg> @

The argument is not processed, but simply skipped over. In other words, this instruction only moves
the head one item to the right. (This is like expl3’s argument specifier n.)

65

process instruction

process instruction

process instruction

process instruction

process instruction

n means repetition.
When the end of the instructions is reached, any remaining arguments on the right are processed
using this no-op instruction.

o[n] expand once @ (arg) — (result) @®
(arg) is expanded once. (This is like expl13’s argument specifier o).
The operation is repeated n times (default, one) without moving the head between the repetition.
For example, 03 expands the argument three times (and then moves the head right).

x fully ezpand @ (arg) — (result) ®
(arg) is fully expanded using \edef. (This is like expl3’s argument specifier x.)

0[n] option @ (option) — (result) @®
(option)=(option name)|(relative node name). (option name)

In the former case, (result) is the value of option at the current node, in the latter, the value of option
at the node referred to by (relative node name).

n means repetition.

R[n| register @ (register) — (result) @
(result) is the value of register (register).
n means repetition.

p[n] process @ (process) — (result) @®

Execute an embedded call of the argument processor. The embedded argument processor may return
any number of items.

n means repetition.

\begin{forest}
grow’=0, phantom,
No content was given, so there’s nothing to do. delay={for children={
content/.process={_0= ? p}
We have content (3), so we compute: 3 + 42 =45 {}content}
{_{No content was given, so there’s nothing to do.}}
No content was given, so there’s nothing to do. {Owi{content}{We have content (##1), so we compute:
$##1+42=\the\numexpr ##1+428$3}}
We have content (5), so we compute: 5+ 42 = 47 1}
[[1031010511]
\end{forest}
process instruction P[Tl] pgfmath @® <pgfmath> — (result) @®

(result) is the result of evaluating (pgfmath expr) using \pgfmathparse.
n means repetition.

Combining P and w, .process is capable of anything .wrap n pgfmath args can do. Even better, as
we can combine pgfmath and non-pgfmath methods, computations that use .process can be (much!)
faster. Study the following examples to see how less and less pgfmath is used to achieve the same
result — but note that such extreme antipgfmathism probably only makes sense for style/package
developers in computations that get performed many times.

66

(87)

\begin{forest} (88)
[,grow’=east, where level=1{}{phantom,ignore,ignore edge}
[(a),delay={content/.wrap 4 pgfmath args={#1 $#2*#3=#4$}
{content}{content("!1")}{content ("!2")}{int (content ("!1")*content ("!2"))}}
(61711
[(b) ,delay={content/.process={0 00P w4}
{content}
{!1.content}{!2.content}{int (content ("!1")*content ("!2"))}
{#1 $#2+#3=#4$}}
(61711
[(c) ,delay={content/.process={0 00 W2+P w4}
{content}
{!1.content}{!2.content}{int (#1*#2)}
{#1 $#2+#3=#48}}
[61(711
[(d) ,delay={content/.process={0 00 W2+n w4}
{content}
{!1.content}{!2.content{#1*#2}
{#1 $#2+#3=#4$}}
[61[7]1]

(a) 6% 7 =42
(b) 6% 7 = 42
(c) 67 = 42

]
\end{forest}

process instruction L[N] NUMEXPT @ (numexpr) — (result) @
(result) is the result of evaluating (dimexpr) using eTEX’s \number \numexpr.

n means repetition.

process instruction d[n] dimexpr @ (dimexpr) — (result) @&
(result) is the result of evaluating (dimexpr) using eTEX’s \the\dimexpr.

n means repetition.

process instruction +[n] chain instructions (arg> @ — @® (arg)

This action allows one to “process the same argument more than once”. It does not process the
current argument (in fact, there need not be any current argument), but rather moves the last result
back in the argument queue. In other words, our machine’s head moves one step left. You can also
imagine it as an inverse of _.

n means repetition.

\begin{forest} (89)
test/.style n args={3}{align=center,

The value of my option £it is tight. content={The value of my option \texttt{#1} is \texttt{#2}.\\#3}}

Yes it is! [fit,delay={test/.process={0 0+0}{content}{content}{Yes it is!}}]
\end{forest}
process instruction W[N] (consuming) wrap (argy). .. (arg,) @® (macro body) — (result) @®
process instruction W[n] (non-consuming) wrap (argy). .. (arg,) ® (macro body) — (arg)... (arg,)(result) ®

Defines a temporary macro with n undelimited arguments using the (macro body) given on the
right and expands it (once). The arguments given to the temporary macro are taken from the left:
(argy). .. (arg,). The result of the expansion is stored as (result) to the right.

With w, (argy)... (arg,) are “consumed”, i.e. they are removed from the result list on the left. W keeps
(argy). .. (arg,) in the result list.

Default n is 1. (Specifying n > 9 raises an error.)

process instruction &[n] boolean “and”

process instruction |[n] boolean “or” (argy)(arga) @ — (result) @

(result) is a boolean conjunction/disjunction of n arguments. The arguments are taken from the
left. They should be numbers (positive integers): 0 means false, any other number means true. The
(result) is always 0 or 1.

Default n is 2.

67

process

process

process

process

process

process

process

process

process

process

process

instruction

instruction

wnstruction

instruction

instruction

! boolean “not” (arg) @ — (result) @

?

<
>

conditional (if ... then ... else)

comparison: (arg;) > (args)?

(result) is a boolean negation of the argument. The argument is taken from the left. It should be a
number (positive integer): 0 means false, any other number means true. The (result) is always 0 or
1.

(condition) @ (true arg)(false arg) — @ (result)
(result) is (true arg) is (condition) is true (non-zero), otherwise (false arg).

The condition is taken from the left. The true and false arguments are expected on the right, where
the winner is left as well.

comparison: (arg;) = (args)?

comparison: (arg;) < (args)?

(argi)(argy) ® — (result) @

Compare (arg;) and (args), returning 1 (true) if (arg;) is equal to / less than / greater than (args),
0 (false) otherwise.

The arguments are taken from the left. They can be either numbers, dimensions, text or token lists.
Both arguments are expected to be of the same type. The type of comparison is determined by the
type of the result returned by the last instruction. 0/R look up the type of option/register to determine
the type (booleans are numbers and keylists are toks). Text type must be marked explicitely using t.

Comparison is carried out using \ifnum for numbers, \ifdim for dimensions (this includes unitless
decimals returned by pgfmath) and \pdfstrcmp3® for text — for these three types, all three com-
parison operators are supported. For generic token lists, only = makes sense and is carried out using
\ifx.

In the following example, (a) performs lexicographical comparison because we have marked 21 as text;
(b) and (c) perform numeric comparison: in (b), the type is automatically determined from the type
of register tempcounta, in (¢) 21 is marked manually using n.

\forestsetq{
tempcounta=100,
TeX/.process={Rwl}{tempcounta}{$#1>21$7\ },

100 > 217 (a) no, (b) yes, (c) yes TeX={(a)\ }, if={>{Rt>}{tempcounta}{21}}{TeX=yes}{TeX=no},TeX={,\ },
={,\ }

wnstruction

instruction

instruction

instruction

instruction

instruction

TeX={()\ }, if={>{_R<}{21}{tempcounta}}{TeX=yes}{TeX=no},Te R R
TeX={(c)\ }, if={>{Rn>}{tempcounta}{21}}{TeX=yes}{TeX=no},

t mark as text @ (arg) — (arg) ®

The result is not changed, only its type is changed to text. This is relevant only for comparisons —
both argument processor’s comparisons =, > and < and sort keys (see sort by).

c to lowercase @ (arg) — (result) ®

C to uppercase @ (arg) — (result) ®

- toggle ascending/descending order (negate)

(arg) @ — (result) @

If the argument is of the text type, its sorting order is changed from ascending to descending or vice
versa.

For any numerical argument type (number, dimension, unitless dimension), the argument is actually
negated, which obviously has the same effect on sorting.

For generic type arguments, this operation is a no-op.

u ungroup @ (arg) — @ (item;)... (item,,)

As every TEX undelimited macro argument, (arg) is a list of tokens or braced token lists. This
instruction puts those items back to the right as “separate arguments”.

s[n] (consuming) save (argy)...(argn) ® — @

30\pdfstrcmp expands its arguments.

68

(90)

process

process

process

process

instruction

instruction

instruction

instruction

aggregate

aggregate
aggregate
aggregate
aggregate

aggregate

aggregate

pgfmath function

register

register

register

S[n] (non-consuming) save (argy). .. (arg,) ® — (argy)...(arg,) ®
Saves the last n arguments from the left into a “special place”.

With s, (argy)... (arg,) are “consumed”, i.e. they are removed from the result list on the left. S keeps
(argy). .. (arg,) in the result list.

Default n is 1.

1[n] (consuming) load @ — (argy)...(arg,) ®
L[n] (non-consuming) load @ — (argy)...{(arg,) ®
Loads last n arguments from the “special place” to the left.

With 1, (argi)...(arg,) are “consumed”, i.e. they are removed from the special place. S keeps
(argy). .. (arg,) in the special place.

The default n is 0 and indicates that the entire special place should be loaded.

r reverse (key)list @ (list) — (result) @

(list) should be a comma-separated list (not a name of a keylist option or register). (result) contains
the same elements in the reverse order.

3.14 Aggregate functions

Aggregate functions walk a nodewalk and use the information found in the visited nodes to calculate
something.

All aggregate functions are available both as key handlers and pgfmath functions.
.count=(nodewalk), aggregate_count ("(nodewalk)")

Store the number of nodes visited in the nodewalk into the handled option.

.sum=(forestmath) (nodewalk), aggregate_sum (" (forestmath)"," (nodewalk)")
.average=(forestmath)(nodewalk), aggregate_average (" (forestmath)", " (nodewalk)")
.product=(forestmath) (nodewalk), aggregate_product (" (forestmath)"," (nodewalk)")

.min=(forestmath)(nodewalk), aggregate_min (" (forestmath)","(nodewalk)")
.max=(forestmath)(nodewalk), aggregate_max (" (forestmath)"," (nodewalk)")

Calculate the value of the given (forestmath) expression at each visited node. Store the sum / average
/ product / minimum / maximum of these values into the handled option (handlers) or return it
(pgfmath functions).

.aggregate=(forestmath: start value)(forestmath: every step)(forestmath: after walk)(nodewalk)
aggregate (" (forestmath: start value)" , " (forestmath: every step)", " (forestmath: after walk)"," (nodewalk)")

The generic aggregate function. First, register aggregate result is set to (forestmath: start value).
Then, the given nodewalk is walked. After each step of the (nodewalk), (forestmath: every step)
expression is evaluated in the context of the new current node and stored into aggregate result.
After the walk, the current node is reset to the origin. (forestmath: after walk) expression is then
evaluated in its context and stored into aggregate result as the final result.

Use aggregate result and aggregate n in the (forestmath) expressions to refer to the current result
value and step number.

aggregate n=(count) the current step number
In the every-step expression of an aggregate function, refers to the (real) step number in the aggregate’s
(nodewalk). In the after-walk expression, refers to the total number of (real) steps made.

aggregate result=(toks) the current value of the result

This register is where the intermediate results are stored.

aggregate value=(toks) the value of the expression at the current node
This only applies to special aggregates like .sum, not to the generic .aggregate.
aggregate postparse=none|int|print|macro

Roughly speaking, how should the result be formatted? For details, see [3, §89]. Applies only to
pgfmath versions of aggregate functions, i.e. not to the ’ variants.

69

none No formatting.
int The result is an integer.
print Use pgf’s number printing extension, see [3, §93].

macro Use a custom macro. Specify the macro using aggregate postparse macro=(cs).

Example 1. Randomly generate the content of leaves. The content of a parent is the sum of its children’s
content. Note how we use tree children-first to proceed in a bottom-up fashion.

\begin{forest} (o1)
delay={
611 aggregate postparse=int,
/ for tree children-first={
131 325 155 if n children=0
// \\ //// \\\ / \\ {content/.pgfmath={random(0,100) }}
31 100 81 70 174 99 56 {content/.sum={content}{children}}
}
25/\8 66//8L\\26 O/‘EG y
[eeonIaiItanooaoniInoanm
\end{forest}

Example 2: nested aggregate functions. We are given the black numbers. The inner aggregate, the
sum of children, is applied at every blue node. (See how we actually display the blue numbers by storing
aggregate value to content.) The outer aggregate stores the maximum blue number into the red root.

\begin{forest} (92)
12 delay={

‘ aggregate postparse=int,
content/.max=7

6 12 9 {aggregate_sum("content","children")}/
//‘ \\ // ‘\\ // ‘\\ {every step={content/.register=aggregate value},children}’
12 3 3 4 5 2 3 4 Y [(011021311 [[31[410511 [[21(31[411 1
\end{forest}

Example 3: calculate root mean square of children using the generic .aggregate handler.

\begin{forest} (93)

delay={
2.44948 content/.aggregate=
y {0}{aggregate_result ()+content () "2}{sqrt (aggregate_result/aggregate_n)}
///jV ‘\?\\\ {children}
o 1 2 3 4 }

[[o][11[2][3]1[411]

\end{forest}

3.15 Relative node names

(relative node name)=[(forest node name)][!(nodewalk)]

(relative node name) refers to the FOREST node at the end of the (nodewalk) starting at node named
(forest node name). If (forest node name) is omitted, the walk starts at the current node. If (nodewalk)
is omitted, the “walk” ends at the start node. (Thus, an empty (relative node name) refers to the
current node.)

The (nodewalk) inherits its history from the outer nodewalk (if there is one). Its every-step keylist is
empty.

Relative node names can be used in the following contexts:

e FOREST’s pgfmath option functions (§3.18) take a relative node name as their argument, e.g.
content ("!u") and content ("!parent") refer to the content of the parent node.

e An option of a non-current node can be set by (relative node name) . (option name)=(value), see §3.6.1.

e The forest coordinate system, both explicit and implicit; see §3.16.

70

forest cs

forest cs

forest cs

forest cs

forest cs

forest cs

anchor
anchor

anchor

anchor
anchor
anchor
anchor
anchor
anchor
anchor

anchor

3.16 The forest coordinate system

Unless package options tikzcshack is set to false, TikZ’s implicit node coordinate system [2, §13.2.3] is
hacked to accept relative node names.3".

The explicit forest coordinate system is called simply forest and used like this: (forest cs: (forest
cs spec)); see [2, §13.2.5]. (forest cs spec) is a keylist; the following keys are accepted.

name=(node name) The node with the given name becomes the current node. The resulting point is its
(node) anchor.

id=(node id) The node with the given name becomes the current node. The resulting point is its (node)
anchor.

go=(nodewalk) Walk the given nodewalk, starting at the current node. The node at the end of the walk
becomes the current node. The resulting point is its (node) anchor. The embedded (nodewalk)
inherits history from the outer nodewalk.

anchor=(anchor) The resulting point is the given anchor of the current node.

1=(dimen)
s=(dimen) Specify the 1 and s coordinate of the resulting point.
The coordinate system is the node’s ls-coordinate system: its origin is at its (node) anchor; the l-axis

points in the direction of the tree growth at the node, which is given by option grow; the s-axis is
orthogonal to the l-axis; the positive side is in the counter-clockwise direction from 1 axis.

The resulting point is computed only after both 1 and s were given.

Any other key is interpreted as a (relative node name)[.(anchor)].

3.17 Anchors

FOREST defines several anchors which can be used with any TikZ node belonging to a FOREST tree (manually
added TikZ nodes are thus excluded).

parent anchor
child anchor
anchor

These anchors point to coordinates determined by node options parent anchor, child anchor and
anchor.

parent, parent’, -parent, -parent’

parent first, parent first’, -parent first, -parent first’

first, first’

children first, children first’, -children first, -children first’
children, children’, —children, -children’

children last, children last’, —children last, -children last’
last, last’

parent last, parent, -parent last,-parent last’

Growth direction based anchors.

TikZ’s “compass anchors” east, north etc. resolve to coordinates on the border of the node facing
east, north etc. (for the shapes that define these anchors). The above FOREST’s anchors are similar
in that they also resolve to coordinates on the border of the node. However, the “cardinal directions”
are determined by the growth direction of the tree in the node and its parent:

e anchor parent faces the parent node (or, in case of the root, where the parent would be);

e anchor children faces the children (or, in case of a node without children, where the children
would be);

e anchor first faces the first child (or ... you get it, right?);

31 Actually, the hack can be switched on and off on the fly, using \iforesttikzcshack.

71

e anchor last faces the last child (or ... you know!).

Combinations like children first work like combinations of compass directions, e.g. north west,
but note that

e when first and last are combined with parent into parent first and parent last, they
refer to the first and last child of the parent node, i.e. siblings of the current node.

While first and last always point in opposite directions, parent and children do not do so if the
growth direction of the tree changes in the node, i.e. if the node’s grow differs from it’s parent’s grow.
Thus in general, it is useful to have anchors -parent and -children, which point in the opposite
directions as parent and children, respectively, and their combinations with first and last.

The ’ variants refer precisely to the point where the cardinal growth direction intersects the border.
Variants without > snap to the closest compass anchor of the node.

These anchors work as expected even if the node is rotated, or if the children are reversed.

For simple examples, see definitions of sn edges and roof; for more involved examples, see the edges
library.

parent first parent parent last
-childré¢n first -children -childrjen last
firlst lajst
grow=270
childrgn first children childrén last

-parent first -parent -parent last first

childden first

-paren first

parent last’

rén last’ parent first first parent last

-childr¢n first parent childr -pafent last

fTdren first’

fikst? 710 chilflren
= p—
oW 1 grow’=0
% -children
children
childrep® ~childrkn last last childrén_last
: arent last’
childrgn first’ -parent first -parent -parent last

parent first first children first

-parent first’ N X
n first -parerft first
parjent 5 chilfiren
grow’=
-children -patent
parenft last last childrén last
-children last -parent last

72

(94)

\def\redorblue#1{\expandafter\redorbluei#1\END} %
\def\redorbluei#1#2\END{\expandafter\ifx#1-red\else blue\fil}/

\forestset{
draw anchors/.style n args=3{/ #I=above, #2=below, #3=’-vartant of anchor?
tikz={

\foreach \a in {first,last,parent first,parent last,children,children last,#1}
{\£i11[] (.\a#3)circle[radius=1pt] node[above,font=\tiny,color=\redorblue\al{\a#3};}
\foreach \a in {-parent first,-parent,-parent last,-children,-children first,#2}
{\£fi11[] (.\a#3)circle[radius=1pt] node[below,font=\tiny,color=\redorblue\al{\a#3};}
}
},
draw anchors/.default={parent,children first}{-children last}{},
}
\begin{forest}
for tree={
minimum width=10em, minimum height=13ex, s sep+=bemn,
draw, draw anchors,
font=\tt, delay={content/.process=00w2{grow}{reversed}{grow\ifnum#2=1’\fi=#1}}

}
[
[,rotate=20,draw anchors={parent,children first}{-children last}{’}]
[,for tree={grow’=0}, 1 sep+=bem, draw anchors={-children last}{parent,children first}{}
[,rotate=-60]
[
]
]
\end{forest}

3.18 Additional pgfmath functions

For every option and register, FOREST defines a pgfmath function with the same name, with the proviso
that the name might be mangled in order to conform to pgfmath’s naming rules. Specifically, all non-
alphanumeric characters in the option/register name and the initial number, if the name starts with one,
are replaced by an underscore _ in the pgfmath function name.

Pgfmath functions corresponding to options take one argument, a (relative node name) (see §3.15)
expression, making it possible to refer to option values of non-current nodes. The (relative node name)
expression must be enclosed in double quotes in order to prevent pgfmath evaluation: for example, to refer
to the content of the parent, write content ("!lu"). To refer to the option of the current node, use empty
parentheses: content () .32

If the (relative node name) resolves to the invalid node, these functions will an return empty token list
(for (toks) options), Opt (for (dimen) options) or 0 (for (count) options).

Note that the nodewalk in the relative node name inherits its history from the outer nodewalk (if there
is one), so strange but useful constructions like the following are possible.

\begin{forest} (95)
for tree={no edge},
before typesetting nodes={
for nodewalk={

C,
1 every step={
f \ tikz/.wrap pgfmath arg=
2 4 {\draw[<-] O--(#1);}
T i {name("!b")}
},
3«5 21{up1},ancestors
H>
},
[1[2[311[4[511]
\end{forest}

Boolean function valid returns true if the node’s id# 0, i.e. if the node is a real, valid node; see §3.5.1
and §3.8. Boolean function invalid is a negation of valid.

32In most cases, the parentheses are optional, so content is ok. A known case where this doesn’t work is preceding an
operator: 1+icm will fail.

73

pgfmath function min_1=((nodewalk: node), (nodewalk: context node))

pgfmath function min_s=((nodewalk: node), (nodewalk: context node))

pgfmath function max_1=((nodewalk: node), (nodewalk: context node))

pgfmath function max_s=((nodewalk: node), (nodewalk: context node))
These functions return the minimum/maximum value of 1/s of node at the end of (nodewalk: node)
in the context (i.e. growth direction) of node at the end of (nodewalk: context node).

Three string functions are also added to pgfmath: strequal tests the equality of its two arguments;
instr tests if the first string is a substring of the second one; strcat joins an arbitrary number of strings.

Some random notes on pgfmath: (i) &&, || and ! are boolean “and”, “or” and “not”, respectively.
(ii) The equality operator (for numbers and dimensions) is ==, not =. And some examples:
/ —— /home /home/joe /home/joe/TEX
\<::::: /home/saso /home/saso/TEX
/home/a user with a long name /home/a user with a long name/TEX
/usr (96)
\begin{forest}
for tree={grow’=0,calign=first,1=0,1 sep=2em,child anchor=west,anchor=base
west,fit=band,tier/.pgfmath=level ()},
fullpath/.style={if n=0{}{content/.wrap 2
pgfmath args={##1/##2}{content ("!u")}{content)}}},
delay={for tree=fullpath,content=/},
before typesetting nodes={for tree={content=\strut#1}}
[
[home
[joe
[\Tex]]
[saso
[\Tex]]
[a user with a long name
[\Tex11]
[usr]]
\end{forest}
CP (97)
bp - C /% mark non-phrasal terminal nodes
/ \ \begin{forest}
c TP delay={for tree={if=
/ \\ {!instr("P",content) && n_children==0}
DP T {fill=yellow}
/ \ >
T VP 1
/ \\ (cp[pP] [c’ [c] [TP[DP] [T’ [T] [VP[DP] [V’ [V][DP]11]1]11]
\end{forest}
bp Vv
VvV DP
% roof terminal phrases (98)
//;VP\\\ \useforestlibrary{linguistics}
AR
DP \A \begin{forest}
// \\ delay={where n children=0{tier=word,
V4 DP if={instr ("P",content ("!u"))}{roof}{}
‘ iji 33,
[VP[DP [Mary]l] [V’ [V[loves]] [DP[her cat]]]]

Mary loves her cat \end{forest}

74

3.19 Standard node

macro \forestStandardNode(node)(environment fingerprint)(calibration procedure){exported options)

This macro defines the current standard node. The standard node declares some options as exported.
When a new node is created, the values of the exported options are initialized from the standard node.
At the beginning of every forest environment, it is checked whether the environment fingerprint of
the standard node has changed. If it did, the standard node is calibrated, adjusting the values of
exported options. The raison d’etre for such a system is given in §2.4.1.

In (node), the standard node’s content and possibly other options are specified, using the usual bracket
representation. The (node), however, must not contain children. The default: [dj].

The (environment fingerprint) must be an expandable macro definition. It’s expansion should change
whenever the calibration is necessary.

(calibration procedure) is a keylist (processed in the /forest path) which calculates the values of
exported options.

(exported options) is a comma-separated list of exported options.
This is how the default standard node is created:

\forestStandardNode [dj]

{7
\forestOve{\csname forest@id@of@standard node\endcsnamel}{content}, %
\the\ht\strutbox, \the\pgflinewidth, /
\pgfkeysvalueof{/pgf/inner ysep},\pgfkeysvalueof{/pgf/outer ysepl},/
\pgfkeysvalueof{/pgf/inner xsep},\pgfkeysvalueof{/pgf/outer xsep}/

}

{
1 sep={\the\ht\strutbox+\pgfkeysvalueof{/pgf/inner ysep}l},
1={1_sep()+abs(max_y () -min_y ()) +2*\pgfkeysvalueof{/pgf/outer ysep}},
s sep={2*\pgfkeysvalueof{/pgf/inner xsepl}}

}

{1 sep,l,s sep}

3.20 Externalization

Externalized tree pictures are compiled only once. The result of the compilation is saved into a separate
.pdf file and reused on subsequent compilations of the document. If the code of the tree (or the context,
see below) is changed, the tree is automatically recompiled.

Externalization is enabled by:

\usepackage [external] {forest}
\tikzexternalize

Both lines are necessary. TikZ’s externalization library is automatically loaded if necessary.

external/optimize Parallels /tikz/external/optimize: if true (the default), the processing of non-
current trees is skipped during the embedded compilation.

external/context If the expansion of the macro stored in this option changes, the tree is recompiled.

external/depends on macro=(cs) Adds the definition of macro (cs) to external/context. Thus, if the
definition of (cs) is changed, the tree will be recompiled.

FOREST respects or is compatible with several (not all) keys and commands of TikZ’s externalization
library. In particular, the following keys and commands might be useful; see [2, §32].

e /tikz/external/remake next

e /tikz/external/prefix

/tikz/external/system call

\tikzexternalize

\tikzexternalenable

75

e \tikzexternaldisable

FOREST does not disturbe the externalization of non-FOREST pictures. (At least it shouldn’t ...)

The main auxiliary file for externalization has suffix .for. The externalized pictures have suffices
-forest-n (their prefix can be set by /tikz/external/prefix, e.g. to a subdirectory). Information on
all trees that were ever externalized in the document (even if they were changed or deleted) is kept. If you
need a “clean” .for file, delete it and recompile. Deleting ~forest-n.pdf will result in recompilation of
a specific tree.

Using draw tree and draw tree’ multiple times s compatible with externalization, as is drawing the
tree in the box (see draw tree box). If you are trying to externalize a forest environment which utilizes
TeX to produce a visible effect, you will probably need to use TeX’ and/or TeX’’.

4 Libraries

This chapter contains not only the reference of commands found in libraries and some examples of their
usage, but also their definitions. This is done in the hope that these definitions, being mostly styles, will
be useful as examples of the core features of the package. I even managed to comment them a bit ...

Disclaimer. At least in the initial stages of a library’s development, the function and interface of macros
and keys defined in a library might change without backwards compatibility support! Though I'll try to
keep this from happening ...

1 \RequirePackage{forest}

4.1 1linguistics
2 \ProvidesForestLibrary{linguistics}[2017/07/14 v0.1.2]

Defaults:
3 \forestset{
4 linguistics@set@baseline/.style={
5 if phantom={for next node=linguistics@set@baseline}{baseline}
6 I,
7 libraries/linguistics/defaults/.style={
8 default preamble={
Edges of the children will “meet” under the node:
9 sn edges,

The root of the tree will be aligned with the text ... or, more commonly, the example number. More

precisely, we actually align the first (in linear order) non-phantom node. This covers the common case of
side-by-side trees joined with a phantom root.

10 before drawing tree={

11 if nodewalk valid={name=forest@baseline@node}{}{linguistics@set@baselinel},
12 },

Enable (centered) multi-line nodes.

13 for tree={align=center},

14 },

15},

16 }

There’s no linguistics without c-command33 ...
step c—commanded Visit all the nodes c-commanded by the current node.

step c—commanders Visit all the c-commanders of the current node, starting from the closest.

33The definition of c-command is as follows: a node c-commands its siblings and their descendants.

76

\2 5 (99)

\begin{forest}
RN [vp

DP Vv [DP [John]]
[v’
John @ @ [V,[s;i;iw]ﬂ, for c-commanded={draw,circle}
1
sent [DP [Mary]]
@ a @ [DP[D[al]l [NP[letter]]]
1

]
e @ \end{forest}

See how branch’ is used to define c-commanded, and how while nodewalk valid and fake are
combined in the definition of c-commanders.

17 \forestset{

18 define long step={c-commanded}{style}{branch’={siblings,descendantsl}},

19 define long step={c-commanders}{style}{while nodewalk valid={parent}{siblings,fake=parent}},
20 }

c-commanders could also be defined using branch:

branch={current and ancestors, siblings}

sn edges

In linguistics, most people want the parent-child edge to go from the south of the parent to the north
of the child. This is achieved by this (badly named) style, which makes the entire (sub)tree have such

edges.
\begin{forest} (100)
sn edges
VP [vp
/\ [DP]
) [V ’
bP v [v]
/\ [DP]
vV DP 1
]
\end{forest}
21 \forestset{
22 sn edges/.style={
23 for tree={
24 parent anchor=children, child anchor=parent
25 }
26 },
27 }

A note on implementation. Despite its name, this style does not refer to the south and north anchor
of the parent and the child node directly. If it did so, it would only work for trees with standard
linguistic grow=-90. So we rather use FOREST’s growth direction based anchors: children always
faces the children and parent always faces the parent, so the edge will always be between them, and
the normal, upward growing trees will look good as well.

\begin{forest} (101)
bad! good! [bad! [VP,no edge, for tree={grow=90, edge=red},
for tree={parent anchor=south, child anchor=north} /7 bad

[DP] [v [v] [DP]]]]

D DP v \end{forest}
\begin{forest}
p v’ DP [good! [VP, no edge, for tree={grow=90, edge=green},
sn edges % good!
VP [DP] [v’ [v] [DP]1]1]
\end{forest}

7

roof Makes the edge to parent a triangular roof.

28 \forestset{

29 roof/.style={edge path’={%

30 (.parent first)--('u.children)--(.parent last)--cycle
31 }

32 },

33 }

nice empty nodes

We often need empty nodes: tree (102a) shows how they look like by default: ugly.
First, we don’t want the gaps: we change the shape of empty nodes to coordinate. We get tree (102b).

Second, the empty nodes seem too close to the other (especially empty) nodes (this is a result of
a small default s sep). We could use a greater s sep, but a better solution seems to be to use

calign=fixed angles. The result is shown in (102c).

However, at the transitions from empty to non-empty nodes, tree (102c) seems to zigzag (although the
base points of the spine nodes are perfectly in line), and the edge to the empty node left to VP seems
too long (it reaches to the level of VP’s base, while we’d prefer it to stop at the same level as the edge
to VP itself). The first problem is solved by substituting fixed angles for fixed edge angles; the

second one, by anchoring siblings of empty nodes at north. Voil, (102d)!

\forestset{
xlist/.style={
phantom,
for children={no edge,replace by={[,append,

delay={content/.wrap pgfmath arg={\csname @alph\endcsname{##1}.}{n()+#1}}

133
},
xlist/.default=0
}
\begin{forest}
[,xlist,
for tree={after packing node={s+=0.1pt}}, 7 hack!/!!
[cp,
(JCOCOCVP[DP[John]] [V’ [V[1loves]] [DP[Mary]11111]
[CP, delay={where content={}{shape=coordinate}{}}
(JCOICOICVPIDP[John]] [V’ [V[1loves]] [DP[Maryl11111]
[CP, for tree={calign=fixed angles},
delay={where content={}{shape=coordinate}{}}
(JCOICOICVPIDP[John]] [V’ [V[1loves]] [DP[Maryl11111]
[CP, nice empty nodes
(L0 L0 LVPIDP [John]] [V’ [V[1loves]] [DP [Mary]1111]1]
]
\end{forest}

a. b. C. d.

CP

A
/\

/e b
/N,

DPp ’
A \ /\PDP /\ v

John V DP John V John V DP

loves Mary loves Mary loves Ma
ves ry

78

‘ | John

%(a)

%4 (b)

%(c)

% (d)

(102)

34
35
36
37
38
39
40

\forestset{
nice empty nodes/.style={
for tree={calign=fixed edge angles},
delay={where content={}{shape=coordinate,
for current and siblings={anchor=north}}{}}
},
}

draw brackets Outputs the bracket representation of the tree.

draw brackets compact

draw brackets wide These keys control whether the brackets have extra spaces around them (wide) or

41
42
43
44
45

46
47

48
49
50
51
52
53
54
55
56
57
58
59
60

4.1.1

GP1

not (compact).

\providecommand\text [1] {\mbox{\scriptsize#1}}

\forestset{
draw brackets compact/.code={\let\drawbracketsspace\relax},
draw brackets wide/.code={\let\drawbracketsspace\space},
draw brackets/.style={

There’s stuff to do both before (output the opening bracket and the content) and after (output the
closing bracket) processing the children, so we use for tree’.

for tree’={
TeX=1{[%

Complication: content format must be expanded in advance, to correctly process tabular environ-
ments implicitely loaded by align=center, which is the default in this library. (Not that one would
want a multiline output in the bracket representation, but it’s better than crashing.)

\edef\forestdrawbracketscontentformat{\foresteoption{content formatl}}y,
1,
if n children=0{
TeX={\drawbracketsspace\forestdrawbracketscontentformat\drawbracketsspace}
H
TeX={\textsubscript{\text{\forestdrawbracketscontentformatl}}\drawbracketsspace}
3,
H
TeX={]\drawbracketsspace},
}
},
draw brackets wide

}

GP1

For Government Phonology (v1) representations. Here, the big trick is to evenly space xs by
having a large enough outer xsep (adjustable), and then, before drawing (timing control option
before drawing tree), setting outer xsep back to Opt. The last step is important, otherwise the
arrows between xs won’t draw!

An example of an “embedded” GP1 style:

79

\begin{forest}
myGP1/.style={

GP1,
delay={where tier={x}{
for children={content=\textipa{##1}}}{}},
tikz={\draw[dotted] (.south)--
(!'1.north west)--(!1l.north east)--cycle;},
for children={1+=5mm,no edgel}

}
[VP[DP[John,tier=word,myGP1
[0[x[dZ]]1]
[RIN[x[6]1]]
[0[x[n]]]
[RIN[x]]]
11[v’ [V[1loves,tier=word,myGP1
[0[x[1]1]1]
[RIN[x[a]]]1]
[0[x[v]]]
[RIN[x]]]
[0[x[z]]1]
[RIN[x]]]
1] [DP [Mary,tier=word,myGP1
[0[x[m]]]
[RIN[x[e]l]]]
[0[x[r]]]
[RIN[x[i]]1]1]
1111
\end{forest}/
//////////////,\q)\\\\\\\\\\\\\\\
il /V7\
Vv DP
John loyes Mary
Of‘{oﬁ{"ovf‘{OP‘{O.‘f‘{'Of‘{OP‘{
o ol o
X X X X X X X X X X X X X X
\ \ \
&5 b ol) oL
And an example of annotations.
) \begin{forest}[,phantom,s sep=lcm
[ei] [mars] [{[eil}, GP1
R o R o R~ FeEN] [RIN[x[A,el[I,head,associate=N]1]1]1[x]1]
| | |
N N N [{[mars]}, GP1
| | | [0[x[m]]]
X X X X X X [R[N[x[al]l][x,encircle,densely dotted[r]]]
‘ ’ ‘ ‘ { [0[x,encircle,govern=<[s]]]
& a s [R,fen [N [x]]]
i]
B J\end{forest}
61 \newbox\standardnodestrutbox
62 \setbox\standardnodestrutbox=\hbox to Opt{\phantom{\forestOve{standard node}{content}}}
63 \def\standardnodestrut{\copy\standardnodestrutbox}
64 \forestset{
65 GP1/.style 2 args={

80

(103)

(104)

66 for n={1}{baseline},

67 s sep=0Opt, 1 sep=0Opt,

68 for descendants={

69 1 sep=Opt, 1={#1},

70 anchor=base,calign=first,child anchor=north,

71 inner xsep=1pt,inner ysep=2pt,outer sep=0Opt,s sep=0Opt,

72 },

73 delay={

74 if content={}{phantom}{for children={no edge}’},

75 for tree={

76 if content={0}{tier=0R}{},

77 if content={R}{tier=0R}{},

78 if content={N}{tier=N}{},

79 if content={x}{

80 tier=x,content={\times},outer xsep={#2},

81 for tree={calign=center},

82 for descendants={content format={\noexpand\standardnodestrut\forestoption{contentl}}},
83 before drawing tree={outer xsep=Opt,delay={typeset nodel}},

84 s sep=4pt

85 Hi,

86 1,

87 },

88 before drawing tree={where content={}{parent anchor=center,child anchor=center}{}},
89 },

90 GP1/.default={5ex}{8.0pt},

91 associate/.style={/

92 tikz+={\draw[densely dotted] (!)--(!#1);}},

93 spread/.style={

94 before drawing tree={tikz+={\draw[dotted] (!)--(1#1);}}},

95 govern/.style={

96 before drawing tree={tikz+={\draw[->](!)--('#1);}}},

97 p-govern/.style={

98 before drawing tree={tikz+={\draw[->] (.north) to[out=150,in=30] (!#1.north);}}},
99 no p-govern/.style={

100 before drawing tree={tikz+={\draw[->,loosely dashed] (.north) to[out=150,in=30] ('#1.north);}}},
101 encircle/.style={before drawing tree={circle,draw,inner sep=Opt}},

102 fen/.style={pin={[font=\footnotesize,inner sep=1pt,pin edge=<-]110:\textsc{Fen}}},
103 el/.style={content=\textsc{\textbf{##1}}},

104 head/.style={content=\textsc{\textbf{\underline{##1}}}}

105 }

4.2 edges

106 \ProvidesForestLibrary{edges}[2016/12/05 v0.1.1]
forked edge’

Sets a forked edge to the current node. Arbitrary growth direction and node rotation are supported.

forked edge

Like forked edge’, but it also sets parent anchor and child anchor to the likely values of children
and parent, respectively.

forked edges=(nodewalk) tree

Invokes forked edge for all nodes in the (nodewalk), by default the entire (sub)tree rooted in the
current node.

option Tork sep The 1-distance between the parent anchor and the fork.

81

\begin{forest}
for tree={grow’=0,draw},
forked edges,
L/
[home
[saso
[Download]
[TeX]

Download

1
[aljal
[joel

1

[usr
[bin]
[share]

]

]
\end{forest}

See how growth direction based anchors children and parent are used in the definition below to easily

take care of arbitrary grow and rotate.

107 \forestset{

108
109
110
111
112
113
114
115
116
117
118
119

120 }

declare dimen={fork sep}{0.5em},
forked edge’/.style={
edge={rotate/.option=!parent.grow},
edge path’={(!u.parent anchor) -- ++(\forestoption{fork sep},0) |- (.child anchor)},
1,
forked edge/.style={
on invalid={fake}{!parent.parent anchor=children},
child anchor=parent,
forked edge’,
1,
forked edges/.style={for nodewalk={#1}{forked edge}},
forked edges/.default=tree,

folder The children of the node are drawn like folders.

All growth directions are supported (well, cardinal directions work perfectly; the others await the
sensitivity of packing to edge path), as well as node rotation and reversed order of children.

The outlook of the folder can be influenced by setting standard FOREST’s options 1 sep and s sep
any time before packing, or 1 and s after packing. Setting 1 and s before packing will have no
influence on the layout of the tree.

register folder indent=(dimen) .45em

Specifies the shift of the parent’s side of the edge in the 1-direction.

/ \begin{forest}
for tree={grow’=0,folder,draw}
[/
[home
[saso
[Download]
[TeX]
]
[aljal
[joel
]
[usr
[bin]
[share]

1
1
\end{forest}

82

(105)

(106)

121 \forestset{

122 declare dimen register=folder indent,
123 folder indent=.4bem,

124 folder/.style={

125 parent anchor=-children last,

126 anchor=parent first,

127 calign=child,

128 calign primary child=1,

129 for children={

130 child anchor=parent,

131 anchor=parent first,

132 edge={rotate/.option=!parent.grow},
133 edge path’/.expanded={

134 ([xshift=\forestregister{folder indent}]!u.parent anchor) |- (.child anchor)
135 1,

136 1,

137 after packing node={

138 if n children=0{}{

139 tempdiml=1_sep()-1("!1"),

140 tempdims={-abs (max_s("","")-min_s("",""))-s_sep()},
141 for children={

142 l+=tempdiml,

143 s+=tempdims () * (reversed ()-0.5)*2,
144 },

145 },

146 1,

147}

148 }

5 Gallery

5.1 Decision tree

The following example was inspired by a question on TEX Stackexchange: How to change the level distance
in tikz-qtree for one level only?. The question is about tikz-qtree: how to adjust the level distance for
the first level only, in order to avoid first-level labels crossing the parent—child edge. While this example
solves the problem (by manually shifting the offending labels; see elo below), it does more: the preamble
is setup so that inputing the tree is very easy.

1,2 2,3 1,0 2,2 31 0,0

83

(107)

http://tex.stackexchange.com/questions/39103/how-to-change-the-level-distance-in-tikz-qtree-for-one-level-only
http://tex.stackexchange.com/questions/39103/how-to-change-the-level-distance-in-tikz-qtree-for-one-level-only

\forestset{
declare toks={elo}{}, / Edge Label Options
anchors/.style={anchor=#1,child anchor=#1,parent anchor=#1},
dot/.style={tikz+={\fill (.child anchor) circle[radius=#1];}},
dot/.default=2pt,
decision edge label/.style n args=3{
edge label/.expanded={node[midway,auto=#1,anchor=#2,\forestoption{elo}]{\strut$\unexpanded{#3}$}}
},
decision/.style={if n=1
{decision edge label={left}{east}{#1}}
{decision edge label={right}{west}{#1}}
},
decision tree/.style={
for tree={
s sep=0.5em,1=8ex,
if n children=0{anchors=north}{
if n=1{anchors=south east}{anchors=south west}},
math content,
},
anchors=south, outer sep=2pt,
dot=3pt,for descendants=dot,
delay={for descendants={split option={contentl}{;}{content,decision}}},
}
}
\begin{forest} decision tree
[N,plain content
[I;{p_1=0.5},plain content,elo={yshift=4pt}
[{5,1};a]
[II;b,plain content
[{1,2};m]
[{2,3};n]

1
[IT;{p_2=0.5},plain content,elo={yshift=4pt}
[;c
[{1,0};z]
[{2,2};t]

]

[;d
[{3,1};z]
[{0,0};t]

1

] {\draw[dashed] (!1.anchor)--(!2.anchor) node[pos=0.5,abovel {I};}
]
\end{forest}

5.2 forest-index

The indexing system used to document the FOREST package uses the package itself quite heavily. While
this might be a bit surprising at first sight, as indexing draws no trees, the indexing package illustrates the
usage of some of the more exotic features and usage-cases of the FOREST package, which is why its source
is included in this documentation.3*

This package has three main functions:

e It is possible to index subentries using a short form of their index key, i.e. without referring to
their ancestor entries. For example, instead of writing \index{option>content} one can simply
write \index{content}. (Obviously, the subentry must “content” be defined as belonging to entry
“option” first. This is done using \indexdef {option>content}.) This works for all keys which are
a subentry of a single entry.

e All subentries are automatically entered as main entries as well, with a qualificator of which entry they
belong to. So, \index{option>content} produces two index entries: entry “option” with subentry

34Indexing with this package makes the compilation very slow, so I cannot whole-heartedly recommend it, but I still hope
that it will make a useful example.

84

\index
\indexdef
\indexex
\indexitem
\indexset

“content” and entry “content option”. This works for an arbitrary number of subentry levels.

e Entries can be given options that format the appearance of the entry and/or its descendants in both
text and index. (Entries that format the appearance of their descendants are called categories below.)

e If hyperref package is loaded, the following hyperlinks are created besides the standard ones linking
the page numbers in index to text: (i) entries in text link to the definition in text, (ii) definitions in
the text link to the index entry, (iii) categories in index are cross-linked.

The FOREST package mainly enters the picture with respect to the entry formatting. A simple (narrow)
tree is built containing an entry and all its ancestors. Formatting instructions are then processed using
FOREST’s option processing mechanisms.

Finally, note that this package might change without retaining backwards compatibility, and that
changes of this package will not be entered into the changelog.

Identification.

1 \ProvidesPackage{forest-index}
2 \RequirePackage{forest}

Remember the original INTEX’s \index command.
3 \let\forestindex@LaTeX@index\index

The user interface macros

\index is the general purpose macro. \indexdef and \indexex are shorthands for indexing definitions
and examples. \indexitem is a combination of \indexdef and the \item of the lstdoc package. It
automatically indexes the command being documented. \indexset neither typesets or indexes the entry,
but only configures it; it is usually used to configure categories. All these macros parse their arguments
using xparse. The arguments, listed in the reverse order:

e The final argument, which is the only mandatory argument, is a comma-separated list of index keys.

e The boolean switch > just before the mandatory argument signals that the keys are given in the full
form. Otherwise, keys without a level separator are considered short.

e Indexing options are given by the [optional] argument.

e The first (optional) argument of:

e \indexitem: specifies the default value of the command.
e \index: is used to provide “early” options.

Among the options of these commands, three keylists are of special importance: index key format,
index form format and print format. These hold instructions on how to format the index key, the form
of the entry in the index and the form of the entry in the main text. They work by modifying the contents
of an (autowrapped toks) register result.

An example: how macros are indexed in this documentation. Style macro defined below does everything
needed to format a macro name: it detokenizes the given name (in case the name contains some funny
characters), prefixes the backslash, wraps in in the typewriter font, adds color and hyperlink (the final two
styles are defined in below this package). Note the usage of \protect: it is needed because we want to use
these styles to format entries not just in the main next, but also in the index.

\forestsetq{
detokenize/.style={result=\protect\detokenize{##1}},
tt/.style={result=\protect\texttt{##1}},
macro/.style={detokenize, +result={\char\escapechar}, tt, print in color, hyper},

}

Then, we configure the main level entry “macro”: the child of this entry will be formatted (both in index
and in the main text) using the previously defined style.

\indexset
[for first={format=macro}]
>{macro}

85

Usage is then simple: we write \indexex{macro>forestoption} (or simply \indexex{forestoption} to
get \forestoption.

4 \DeclareDocumentCommand\indexdef{0{} t> m}{%

5 \IfBooleanTF{#2}

6 {\let\forestindex@resolvekey\forestindex@resolvekey@long}

7 {\let\forestindex@resolvekey\forestindex@resolvekey@shortorlong}’

8 \forestindex@index{definition}{#1}{#3}}

9 \DeclareDocumentCommand\indexex{0{} t> m}{/

10 \IfBooleanTF{#2}

11 {\let\forestindex@resolvekey\forestindex@resolvekey@long}

12 {\let\forestindex@resolvekey\forestindex@resolvekey@shortorlong}’
13 \forestindex@index{example}{#1}{#3}}

14 % \DeclareDocumentCommand\indexitem{D(){} 0{} t> m}{J

15% \IfBooleanTF{#3}

16 % {\let\forestindex@resolvekey\forestindex@resolvekey@long}

17 % {\let\forestindex@resolvekey\forestindex@resolvekey@shortorlong}y,
18 % \forestindex@index{definition}{default={#1},print format=item, #2}{#4}}
19 \DeclareDocumentCommand\indexitem{D(){} 0{} t> m}{%

20 \let\forestindex@resolvekey\forestindex@resolvekey@long

21 \forestindex@index{definition}{default={#1},#2,print format+=item}{#4}}
22 \DeclareDocumentCommand\indexset{0{} t> m}{J

23 \IfBooleanTF{#2}

24 {\let\forestindex@resolvekey\forestindex@resolvekey@long}

25 {\let\forestindex@resolvekey\forestindex@resolvekey@shortorlong}y,
26 \forestindex@index{not print,not index,definition}{set={#1}}{#3}}

27 \DeclareDocumentCommand\index{D(){} 0{} t> m}{¥%

28 \IfBooleanTF{#3}

29 {\let\forestindex@resolvekey\forestindex@resolvekey@long}

30 {\let\forestindex@resolvekey\forestindex@resolvekey@shortorlong}’
31 \forestindex@index{#1}{#2}{#4}/

32}

All UI macros call this macro.
#1 early option keylist
#2 late option keylist
#3 a comma-sep list of forest index key (full or short form). A key can be given an argument using
key=argument syntax. How the argument is used is up to the user. For example, the “environment”
entry of the FOREST documentation uses it to typeset the contents of the environment:

\indexitem{environment>forest={[\texttt{(}\meta{config}\texttt{)}]\meta{tree}}}

33 \def\forestindex@index#1#2#3{/,

Partition the index keylist into single keys. And put it all in a group: the persistent stuff is saved globally.

34 {\forcsvlist{\forestindex@forkey{#1}{#2}}{#3}}/,
35}
36 \def\forestindex@forkey#1#2#3{J,

Short-key resolution. The result is stored into \ forestindex@fullkey.
37 \forestindex@resolvekey{#3}/,
Manipulate arguments a bit, so that we can use our quick-and-dirty one-arg memoization.

38 %\forestset{@index/.process={__o}{#1}{#2}{\forestindex@fullkeyl}}
39 \edef\forest@marshal{/,

40 \noexpand\forestindex@index@{},

41 {\unexpanded{#1}}/

42 {\unexpanded{#2}}/

43 {\expandonce{\forestindex@fullkey}}%
44 Yh

45 }\forest@marshal

46 ¥

Call the central processing command, style @index. See how .process is used to expand (once) the last
argument.

47 \def\forestindex@index@#1{\forestset{@index/.process={__o}#1}}
48 \forestset{

86

declare
toks
register

Declarations

Should we print and/or index the entry? For example, \index [not print]{...2} will index silently (as
ITEX’s \index command does).

49 declare boolean register=print,

50 declare boolean register=index,

51 declare boolean register=short,

Options name, content, key and argument hold info about the current entry. We need to declare only the
latter two, the former two we steal from FOREST.

52 declare toks={key}{},
53 declare toks={argument}{},

These options will hold first the initial, and then the calculated values of the index key, index form and the
form in text. When (late) options are executed, these options are initialized to the value of option key; it is
safe to modify them at this point. Afterwards, they will be further processed by keylists index key format,
index form format and print format, respectively.

54 declare toks={index key}{},

55 declare toks={index form}{},

56 declare toks={print form}{},

The customization of entries’ appearance is done by specifying the following three keylists. The keylists
work by modifying register result.

57 declare keylist={index key format}{},

58 declare keylist={index format}{},

59 declare keylist={print format}{},

60 declare autowrapped toks register=result,

Some shorthands.

61 format’/.style={print format’={#1}, index format’={#1}},

62 format/.style={print format={#1}, index format={#1}},

63 format+/.style={print format+={#1}, index format+={#1}},

64 +format/.style={+print format={#1}, +index format={#1}},

65 form/.style={print form={#1},index form={#1}},

66 form+/.style={print form+={#1},index form+={#1}},

67 +form/.style={+print form={#1},+index form={#1}},

Entry types are normal (default), definition, example. Only definitions are special, as their options are
automatically saved.

68 declare toks register=index entry type,

69 definition/.style={index entry type=definition},

70 normal/.style={index entry type=normal},

71 example/.style={index entry type=example},

72 normal,

This option is used internally to store the hyper ids.

73 declare toks={index@hypertarget}{},

74 every index begin/.style={},

75 every index end/.style={},

Some formatting tools need to know whether we’re typesetting text or index: this info is stored in the
stage register.

76 declare toks register=stage,

The central processing command

#1 early option keylist (these are only used to define category “@unknown” at the end of this package)
#2 late option keylist
#3 index key (full form)

77 Qindex/.style n args={3}{
Set the defaults.
78 print, index, index entry type=normal, set’={}, short,

Create the tree structure: [entry [subentry [subsubentry...]]]. Three options of every node created:
e key contains the key of the (sub)entry
e name contains the full path to the (sub)entry

87

nodewalk

first
leaf’

e arguments contains the arguments given to the (sub)entry’s key

e content contains the full key, with arguments for all but the most deeply embedded subentry
for nodewalk is used because create@subentry@node walks down the created tree. At if n=0 below,
we’re thus positioned at the lowest node.

79 for nodewalk={

The components of the full key are separated using split, with different keys being executed for the first
component and the rest.

80 split={#3}{>}{create@main@entry@node, create@subentry@node},

Remove the argument from the most deeply embedded subentry.

81 if n=0{

82 content/.option=key,

83 H

84 content/.process={00w2} {!parent.content} {key} {##1>##2},
85 }

86 H:,

87 for root’={

Don’t memoize if the key is of an unknown category.
88 if strequal/.process={0}{!root.name}{@unknown}{TeX=\global\forest@memoizing@ok@false}{},

Option print form is what will be typeset in the text. Option index key is the key that will be used for
sorting the index. Option index form is what will be typeset in the index. All these are initialized to the
key. See how .option is used to assign an option value to another option.

89 for tree={

90 print form/.option=key,
91 index key/.option=key,
92 index form/.option=key,
93 1,

Below, on invalid is set to fake at four points. This is so we won’t get in trouble when \indexsetting
the categories: when the category formatting code will try to step into the child, it will fail as the child
does not exist when \indexset is called for the category; but we ignore the failure.

Go to the the most deeply embedded subentry.
94 for first leaf’={

Execute every index options and the given early options.

95 on invalid={fakel}{
96 every index begin,
97 #1,

98 1,

Ancestors are walked in the reverse order (top down). At every node, the saved configuration is executed
(if it exists).
99 for reverse={current and ancestors}{on invalid={fake}{@@index/\forestoption{name}/.try}},

We don’t execute the saved configuration for definitions, as definitions are where the configuration is set.

100 if index entry type={definition}{}{%
101 on invalid={fake}{@@index/\forestoption{name}/.try},
102 },

Execute late (well, normal) options. See the discussion about early options above.

103 on invalid={fake}{
104 #2,

105 every index end
106 },

Remember the given config for the rest of the document.
107 if set={}{}{save@session},

If we're at a definition, save the config into the auxiliary file.

108 if index entry type={definition}{save@foridx}{},
109 },
110 stage={},

88

Create hyperlink targets of the form .entry.subentry. subsubentry.. ..
FOREST points: (i) the generic conditional if, (ii) handler .process,

111 if index={

112 index@hypertarget/.process={0S_= ? 1_ w2}
113 {index key}

114 {3

115 3.}

116 {##2##1},

117 for descendants={

118 index@hypertarget/.process={00 S _11= ? w2 }
119 {!parent.index@hypertarget}{index keyl}
120 {3

121 {##1} % empty index key

122 {##1.##2} 7, otherwise

123 1,

124 Hi,

Index.

125 if index={

126 begingroup,

127 stage=index,

For each (sub)entry, format the index key using the instructions in index key format.

128 for tree={

129 result/.option=index key,

130 process keylist’={index key format}{current},
131 index key/.register=result,

132 },

For each (sub)entry, format the index form using the instructions in index form format.

133 for tree={

134 result/.option=index form,

135 process keylist’={index format}{current},
136 index form/.register=result,

137 1,

Create an index entry for all nodes where index form is non-empty.
138 where index form={}{}{

All the ancestor nodes with an non-empty index form will be appended (in script size, as a hyperlink) to
the index form of the current node.

139 if n=0{

140 temptoksb={},

141 H

142 temptoksc={},

143 for ancestors={

144 if index form={}{}{

145 temptoksb+/.expanded={\forestregister{temptoksc}y
146 \noexpand\protect\noexpand\hyperlinknocolor{j
147 \forestoption{index@hypertarget}}{\forestoption{index form}}},
148 temptoksc={, \spacel},

149 1,

150 1,

151 if temptoksb={}{}{

152 +temptoksb={\protect\space\begingroup\protect\scriptsize},
153 temptoksb+={\endgroup},

154 1,

155 1,

156 temptoksa={},

157 result’={},

158 if n children=0{tempboola}t{not tempboola},

159 where index form={}{}{

Create the hypertarget that the definitions in text and other index entries will point to.

160 temptoksd/ . expanded={\noexpand\protect\noexpand\hypertarget{/
161 \forestoption{index@hypertarget}}{}},

89

Add the (inner) current node to the index entry of the (outer) current node.

162 result+/.expanded={},

163 \forestregister{temptoksalj,
164 \forestoption{index keyl}%
165 =\forestoption{index forml}
166 \forestregister{temptoksd}y,
167 \forestregister{temptoksbl}/
168 1,

169 temptoksa={>},

170 temptoksb={},

171 3,

Do the actual indexing.

172 result+/.expanded={|indexpagenumber\forestregister{index entry typel},

173 TeX and memoize/.expanded={\noexpand\forestindex@LaTeX@index{\forestregister{result}}},
174 },

175 endgroup

176 H3,

177 if print={

178 begingroup,

179 stage=print,

For each (sub)entry, format the print form using the instructions in print form format.

180 for tree={

181 result/.option=print form,

182 process keylist’={print format}{current},
183 print form/.register=result,

184 1,

Typeset the entry in the text.

185 for first leaf’={TeX and memoize/.expanded={\forestoption{print form}}},
186 endgroup,

187 Hb,

188 }

189 1,

Create the main entry node and set to be the root.

190 create@main@entry@node/.style={J, #1 = subentry

191 set root={[1},

192 do dynamics, for root’={process delayed=tree},
193 root’,

194 setup@entry@node={#1}

195 },

Create a subentry node and move into it.

196 create@subentry@node/.style={
197 append={[]},

198 do dynamics, for root’={process delayed=tree},
199 n=1,

200 setup@entry@node={#1}

201},

Parse #1 into key and argument, and assign name and content.

202 setup@entry@node/.style={

203 options={

204 split={#1}{=}{key,argument},

205 if n=0{

206 name’/.option=key,

207 content={#1},

208 H

209 name’/.process={00w2} {!parent.name} {key} {##1>##2},
210 content/.process={0wl} {!parent.content} {##1>#1},
211 },

212 }

213 3,

214 }

90

Autoforward
register

Saving and loading the options
215 \forestsetq{

This register holds whatever we need to remember.
216 declare keylist register=set,

Besides storing the keylist in the register, also immediately execute it..
217 Autoforward register={set}{##1},

Remember things by saving them in a global style.
218 save@session/.style={@Q@index/\forestoption{name}/.global style/.register=set},

Save thinks to the auxiliary file.
219 save@foridx/.style={

Don’t save entries of unknown category.

220 if strequal/.process={0}{!root.name}{Qunknown}{}{

Don’t save if nothing is set.

221 if set={}H}{

222 TeX and memoize/.expanded={%

223 \noexpand\immediate\noexpand\write\noexpand\forestindex@out{%

224 \noexpand\string\noexpand\indexloadsettings\noexpand\unexpanded{{\forestoption{name}}{\forest
225 Yo

226 },

227 },

228 },

Save the full form of the key in the auxiliary file. Obviously, do it only for subentries. The full form contains
whatever arguments were given to the non-last component.

229 if key/.process={0}{content} {} {%

230 if short={

231 TeX and memoize/.expanded={%

232 \noexpand\immediate\noexpand\write\noexpand\forestindex@out{%
233 \noexpand\string\noexpand\indexdefineshortkey\noexpand\unexpanded{{\forestoption{key}}{\fores
234 Yh

235 Yh

236 H}

237 }

238}

239 }

Load settings from the auxiliary file into the global style. Warn if anything was configured more than once
(e.g. by \indexdefing the same key twice).

240 \def\indexloadsettings#1#2{/

241 \pgfkeysifdefined{/forest/@Q@index/#1/.0cmd}{%

242 \forestindex@loadsettings@warning{#1}J

243 M3}

244 %, #s in #2 are doubled; the following \def removes one layer of doubling

245 \def\forest@temp{#2}%

246 \forestset{@@index/#1/.global style/.expand once=\forest@templ}/

247 }

248 \def\forestindex@loadsettings@warning#1{J,

249 \PackageWarning{forest-index}{Forest index key "#1" was configured more than once!
250 I’m using the last configuration.l}V

251 }

Load the full form of a short key from the auxiliary file. Out of kindness for the end user, remember all the
full keys corresponding to a short key: this will make a more informative warning below.

252 \def\indexdefineshortkey#1#2{J

253 \def\forestindex@temp@short{#1}/

254 \def\forestindex@temp@long{#2}%

255 \ifx\forestindex@temp@short\forestindex@temp@long

256 \else

257 \ifcsdef{index@long@#1}{%

258 \global\cslet{index@long@#1}\relax
259 \csgappto{index@alllong@#1}{,#2}%

260 H%

261 \global\csgdef{index@long@#1}{#2}}
262 \global\csgdef{index@alllong@#1}{#21}/,

91

263 Y
264 \fi
265 }

Short key resolution

Nothing to do for a long key.
266 \def\forestindex@resolvekey@long#1{\def\forestindex@fullkey{#1}}
Decide whether a key is short or long based on the absence or presence of the level separator >.

267 \def\forestindex@resolvekey@shortorlong#1{/,
268 \pgfutil@in@>{#1}/,
269 \ifpgfutil@in@

270 \expandafter\def\expandafter\forestindex@fullkey
271 \else

272 \expandafter\forestindex@resolvekey@short

273 \fi

274 {#1},

275 }

Before resolving the short key, we need to split the user input into the key and the argument. The latter is
then appended to the full key (which can, in principle, contain arguments for other components as well).

276 \def\forestindex@resolvekey@short#1{}

277 \forestset{split={#1}{=}{index0@resolveshortkey@key,index@resolveshortkeyQarg}l}/
278 }

279 \forestsetq{

280 index@resolveshortkey@key/.code={},

281 \ifcsvoid{index@long@#1}{J

282 \forestindex@resolveshortkey@warning{#11}J,
283 \def\forestindex@fullkey{Qunknown>#1}%

284 H%

285 \letcs\forestindex@fullkey{index@long@#1}%
286 Y

287 1,

288 index@resolveshortkey@arg/.code={}

289 \appto\forestindex@fullkey{=#1}J,

290 1,

291 }

292 \def\forestindex@resolveshortkey@warning#1{/

293 \PackageWarning{forest-index}{Cannot resolve short forest index key "#1".

294 These are the definitions I found (from the previous run):
295 "\csuse{index@alllong@#1}"}/,
296 }

Formatting styles

Define default colors for index entry types and provide a style that typesets the entry in text (but not
index) in the desired color.

297 \forestset{

298 normal color/.initial=blue,

299 definition color/.initial=red,

300 example color/.initial=darkgreen,

301 print in color/.style={if stage={print}{result/.expanded=\noexpand\protect\noexpand\textcolor{’
302 \pgfkeysvalueof{/forest/#1 color}}{\unexpanded{##1}}}{}},

303 print in color/.default=\forestregister{index entry typel,

Use this style in ... format keylists if you want the index entries to be hyperlinks to the definition, and
the definition to be a hyperlink to the index.

304 hyper/.style={

305 if stage={index}{}{

306 if index entry type={definition}{

307 result/.expanded={\noexpand\hypertarget{\forestoption{namel}}/,

308 {\noexpand\hyperlink{\forestoption{index@hypertarget}}{\forestregister{result}}}}
309 H

310 result/.expanded=\noexpand\hyperlink{\forestoption{name}}{\forestregister{result}}
311 }

92

314 }
Color page numbers in the index, with or without hyperref package.

315 \ifdef\hyperpage{%
316 \newcommand\indexpagenumbernormal [1]{{%

317 \hypersetup{linkcolor=\pgfkeysvalueof{/forest/normal color}}\hyperpage{#1}}}
318 \newcommand\indexpagenumberdefinition[1]{{%

319 \hypersetup{linkcolor=\pgfkeysvalueof{/forest/definition color}}\hyperpage{#1}}}
320 \newcommand\indexpagenumberexample [1]{{%

321 \hypersetup{linkcolor=\pgfkeysvalueof{/forest/example color}}\hyperpage{#1}}}
322 H

323 \newcommand\indexpagenumbernormal [1]{%

324 \textcolor{\pgfkeysvalueof{/forest/normal color}}{#1}}

325 \newcommand\indexpagenumberdefinition[1]{%

326 \textcolor{\pgfkeysvalueof{/forest/definition color}}{#1}}

327 \newcommand\indexpagenumberexample [1]{/

328 \textcolor{\pgfkeysvalueof{/forest/example color}}{#1}}

329 }

Provide dummy \hyper... commands if hyperref is not loaded.

330 \providecommand\hyperlink [2]{#2}
331 \providecommand\hypertarget [2] {#2}
332 \providecommand\hypersetup [1]{}

This is used by entry qualifiers: we want them to be hyperlinks, but black.
333 \newcommand\hyperlinknocolor [2] {{\hypersetup{linkcolor=black}\hyperlink{#1}{#2}}}
Use style item to have the index entry (in text) function as the \item of a 1stdoc’s syntax environment.

334 \forestset{

335 declare toks register=default,
336 default={},

337 item/.style={

338 result/.process= {_RORw4}

339 {} {default} {!parent.print form} {result}
340 {\item[,##2,##3] {##4}},

341},

342 }

Utilities

We will need a global version of several pgfkeys commands.

343 \pgfkeys{/handlers/.global style/.code=\pgfkeys{\pgfkeyscurrentpath/.global code=\pgfkeysalso{#1}}}
344 \pgfkeysdef{/handlers/.global code}{\pgfkeysglobaldef{\pgfkeyscurrentpath}{#1}}

345 \long\def\pgfkeysglobaldef#1#2{},

346 \long\def\pgfkeys@temp##1\pgfeov{#2}/

347 \pgfkeysgloballet{#1/.0cmd}{\pgfkeys@temp}%

348 \pgfkeysglobalsetvalue{#1/.@body}{#2}%

349 }

350 \def\pgfkeysgloballet#1#2{/,

351 \expandafter\global\expandafter\let\csname pgfk@#1\endcsname#2},

352 }

353 \long\def\pgfkeysglobalsetvalue#1#2{%

354 \pgfkeys@temptoks{#2}\expandafter\xdef\csname pgfk@#1\endcsname{\the\pgfkeys@temptoksl}y,
355 }

356 \forestset{

357 % unlike pgfmath function strequal, |if strequal| does not expand the compared args!
358 if strequal/.code n args={4}{\ifstrequal{#1}{#2}{\pgfkeysalso{#3}}{\pgfkeysalso{#4}1}},
359 }

Begin and end group, FOREST-style:

360 \forestset{

361 begingroup/.code={\begingroup},
362 endgroup/.code={\endgroup},

363 }

93

5.2.1 Memoize

Quick and dirty memoization. Single argument macros only. Does not support nesting.

364 \newtoks\forest@memoQkey

365 \newtoks\forest@memo

366 \newif\ifforest@memoizing@now®

367 \newif\ifforest@memoizing@ok®@

368 \newif\ifforest@execandmemoize®

369 \def\forest@memoize#1{% #1 = \cs

370 \cslet{forest@memoQ@orig@\string#1}#1/
371 \def#1##1{/,

372 \ifforest@memoizing@now@

373 \forest@globalsaveandrestoreifcs{forest@execandmemoize@}{/,
374 \global\forest@execandmemoize@false

375 \csname forest@memoQ@orig@\string#1l\endcsname{##1}J

376 Yh

377 \else

378 \expandafter\global\expandafter\forest@memoCkey\expandafter{\detokenize{forestOmemo@#1{##1}}1}7
379 \ifcsname\the\forest@memo@key\endcsname

380 \@escapeifif{\csname\the\forest@memo@key\endcsnamel}y

381 \else

382 \Q@escapeifif{}

383 \global\forest@memo{}%

384 \global\forest@memoizing@ok@true

385 \global\forest@memoizing@now@true

386 \global\forest@execandmemoize@true

387 \csname forest@memo@orig@\string#1\endcsname{##1}/,

388 \global\forest@execandmemoize@false

389 \global\forest@memoizing@now@false

390 \ifforest@memoizing@ok®@

391 \csxdef{\the\forest@memoQ@key}{\the\forestOmemol}’,

392 \immediate\write\forest@memo@out{%

393 \noexpand\forest@memo@load{\the\forest@memo@key}{\the\forest@memol}y
394 Yh

395 \fi

396 Yh

397 \fi

398 \fi

399 X%

400 }

401 \def\forest@memo@load#1#2{%

The following two \defs remove one level of hash-doubling from the arguments, introduced by \write.

402 \def\forest@temp@key{#1}%

403 \def\forestQ@temp@value{#2}/

404 \csxdef{\detokenize\expandafter{\forest@temp@key}}{\expandonce\forest@temp@value}
405 \immediate\write\forest@memoQout{/,

406 \noexpand\forest@memo@load{\detokenize\expandafter{\forest@temp@key}}{\detokenize\expandafter{\forest
407 Y%

408 }

409 \forestset{

410 TeX and memoize/.code={\forest@execandmemoize{#1}},

411}

412 \def\forest@execandmemoize#1{J

413 \ifforest@execandmemoize®

414 \let\forest@memo@next\forest@execandmemoize®
415 \else

416 \let\forest@memo@next\@gobble

417 \fi

418 \forest@memo@next{#1}/,

419 #1%

420 }

421 \def\forest@execandmemoize@#1{Y%
422 \gapptotoks\forest@memo{#1}/,
423 }

94

424 \def\forest@memo@filename{\jobname.memo}

425 \newwrite\forest@memoQout

426 \immediate\openout\forestO@memo@out=\forestO@memo@filename. tmp

427 \IfFileExists{\forest@memo@filename}{’

428 \input\forest@memo@filename\relax

429 3%

430 \AtEndDocument{%

431 \immediate\closeout\forest@memo@out

432 \forest@file@copy{\forestO@memo@filename.tmp}{\forestO@memo@filenamel}y,
433 }

Commenting the following line turns off memoization.

434 \forest@memoize\forestindex@index@

Initialize

Declare category “@Qunknown”.

435 \index(not print,not index) [%

436 set={

437 index key=unknown,

438 form={\textbf{unknown!'!'}},

439 for first={format={result/.expanded=\noexpand\textbf{\forestregister{result}?7}}}
440 1,

441]>{@unknown}

Load the auxiliary file made in the previous compilation, and open it for writing to save data from this
compilation.

442 \def\forestindex@filename{\jobname.foridx}

443 \IfFileExists{\forestindex@filename}{}

444 \input\forestindex@filename\relax

445 3%

446 \newwrite\forestindex@out

447 \immediate\openout\forestindex@out=\forestindex@filename.tmp
448 \AtEndDocument{’

449 \immediate\closeout\forestindex@out

450 \forest@file@copy{\forestindex@filename.tmp}{\forestindex@filenamel}y,
451 }

452 \endinput

6 Past, present and future

Roadmap What’s planned for future releases?
e filling up the libraries
e faster externalization
e custom-edge aware packing algorithm and a more flexible (successor of) calign
e support for specialized forest environments, including:

— selectable input parser,
— namespaces (different function, different options),

— better support for different output types.
In short, everything you need to make FOREST your favourite spreadsheet! ;-)

e code cleanup and extraction of sub-packages possibly useful to other package writers

6.1 Changelog

First of all, the list of all compat key values for backward compatibility, and their groupings. Remember,
compat values that reside in styles with suffix -most are harmless: they will not disrupt the new functionality
of the package. But take care when using stuff which only resides in -all styles.

95

most/.style={1.0-most},

all/.style={1.0-all},

none/.style={},

1.0-harmless/.style={
1.0-triangle,1.0-linear,1.0-nodewalk,1.0-ancestors,
1.0-fittotree,1.0-for,1.0-forall,

},

1.0-most/.style={1.0-harmless,2.0.2-most},

1.0-all/.style={1.0-harmless,
1.0-forstep,1.0-rotate,1.0-stages,1.0-name,

2.0.2-all,
},
2.0.2-most/.style={2.0-most},
2.0.2-all/.style={
2.0.2-delayn,2.0.2-wrapnpgfmathargs,
2.0-all,
1,
2.0-edges/.style={2.0-anchors,2.0-forkededge,2.0-folder},
2.0-most/.style={2.1.1-most},
2

0

0
.0-all/.style={

2

2

2

.1.1-most/.style={},
1.1-all/.style={2.1.1-1loops},

6.1.1 v2.1
v2.1.5 (2017/07/14) Minor improvements:

e Smarter baseline defaults for the linguistics library.

e Yield warning when the baseline is set to a node that is not drawn (e.g. a phantom node).

v2.1.4 (2017/02/02)

Performance:

e Reimplement some internals of the packing algorithm to avoid consuming the string pool in
documents with many trees. (We're about 10% slower now, but (depending on the document)
the memory usage can drop up to five times!)

Bugfixes:

e Fix aggregate function .count.

e Provide a workaround for a PGF bug: for coordinate-shaped nodes, \positionnodelater pro-
vides dimensions with pt in a wrong catcode, so max y and friends did not work for such nodes.

v2.1.3 (2017/01/27)
Bugfixes:

e Update nice empty nodes to use for current and siblings.

v2.1.2 (2016/12/31)
Bugfixes:

in -a11 compat=2.1.1-1loops A level of hash doubling was unnecessarily introduced for the (keylist) argument
of all loops (§3.10), and the (nodewalk) argument of process keylist’ and process delayed.
Use this key to revert to the old behaviour.

Minor improvements:

e Implemented key also.

96

v2.1.1 (2016/12/18)

Minor improvements:
e Implemented argument processor instruction p.
Bugfixes:

e Argument processor instruction u introduced an extra layer of braces around each result item.

e Argument processor instructions 1 and L did not always load the desided number of arguments.

e Argument processor instructions & and | were taking the arguments from the start of the left
side instead of its end.

v2.1 (2016/12/05)
Backward incompatible changes (with a compat key):
in -a11 compat=2.0-edges This compat key groups the three changes listed below: the final two depend on

the first, so you will probably want to revert them all or none.

in -all compat=2.0-anchors This is really a bugfix. Growth direction based anchors parent, parent
first and parent last were not facing to the direction of the parent if the growth direction
of the tree changed at the node.

in a1l compat=2.0-forkededge

in -e11 compat=2.0-folder Update the code of keys forked edge (and friends) and folder from the
edges library to reflect the above bugfix.

in -all compat=2.0-delayn Fixing yet another bug in delay n! The number of cycles was reevaluated at each
cycle. Now it is computed immediately, and fixed. Use this key to revert to the old behaviour.
Performance:
e Substantially enhance the argument processor (§3.13), including the ability to use it as a drop-in
replacement for pgfmath.
e Internally, avoid using \pgfmathparse and friends whereever possible.

e Implement a fast set of macros to determine if a pgfmath expression is just a (count) or (dimen)
expression.

e Optimize split option and split register.
Minor improvements:

o Allow (relative node name)s in .option.
e Make aggregate functions (§3.14) nestable and implement their pgfmath versions.

e Implement if (dimen option)>, if (dimen option)<, if (count option)>, if (count option)<,
where (dimen option)>, where (dimen option)<, where (count option)> and where (count
option)<,

e Implement if current nodewalk empty.
e Implement nodewalk steps leaves, -level and -level’.
e Implement nodewalk operation unique.

e Implement on invalid values error if real and last valid, remove value step (no compat
key, as it was broken and useless).

e Implement ‘-* anchors (-parent etc.).

e Implement save and restore register.
e Implement .nodewalk style.

e Implement forestloopcount.

e Allow multiple occurrences of package option compat.
Bugfixes:

e Fix a bug in externalization (\forest@file@copy set \endlinechar to -1, which caused prob-
lems for several packages, e.g. biblatex).

97

Fix a bug in delay n: the number of cycles was reevaluated at each cycle.

Fix a bug in fixed edge angles.

Fix compat key values silent, 1.0-forstep and 1.0-stages.

Fix invocations of spatial propagators for nodewalk and for Nodewalk and Nodewalk.
Fix invocations of for group, for next on tier and for previous on tier.

Fix behaviour of for next on tier, for previous on tier and for to tier on arrival to
the invalid node.

Fix problems with interaction between folder and forked edges.

6.1.2 v2.0
v2.0.3 (2016/04/03)

Backward incompatible changes (with a compat key):

in a1l compat=2.0.2-delayn

in -all compat=2.0.2-wrapnpgfmathargs

This is really a bugfix: keys delay n and .wrap n pgfmath args (for n > 2) were introducing
two layers of hash doubling. Now this confusing behaviour is gone, but as finding the correct
number of hashes is always a tough job, compat keys are provided.

Improvements:

Rework draw tree edge so that by default, an edge is drawn only it both its node and its node’s
parent are drawn. And yes, implement if node drawn.

Implement circularity detection in dynamic node operations.
Implement debug categories and debugging of dynamic node operations.
Declare some further tempdim. .. registers.

Make option id accessible via \forestoption.

Bugfixes:

Execute tikz code for all (including phantom) nodes. (The feature of ignoring phantom nodes
was introduced in v2.0.2, but turns out it was a bad idea: for example, having a phantom root
with some tikz code is not uncommon.)

Keys label and pin now append to option tikz, as makes sense.

Fix nodewalk steps filter and branch so that they can be embedded under nodewalk operations.
(Uh, and recategorize them as operations themselves.)

Execute before packing node even when the node has no children.
level<={0}{...} now works as expected.

Re-setting the node name to the same value doesn’t yield an error anymore.

Don’t add the separator when adding the first element to a keylist option or register.
Copy externalization files in TeX (don’t rely on \write18).

Consistently store dimen options and registers with pts of catcode other.

Properly initialize readonly count options (n, n’, n children and level).

Fix some typos.

v2.0.2 (2016/03/04)

Backward incompatible changes:

The semantics of the parenthesized optional argument to forest environment and \Forest
macro has changed. The argument was introduced in v2.0.0: if present, it redefined stages
style for the current environment/macro. This argument is now generalized to allow further
(pre-stages) customization in future versions of the package. To temporarily redefine stages,
write (stages={...}).

98

New functionality:

e Key last dynamic node and named nodewalk dynamic nodes.
e An optional argument to \useforestlibrary to pass package options to libraries.
e Handler .nodewalk style.

e Keys draw tree node’, draw tree edge’ and draw tree tikz’.
Bugfixes:

e Fixed replace by when applied to the root node.

e Registers are now initialized to an empty string, Opt, or 0.
e Packing doesn’t destroy the current pgfpath anymore.

e \forestStandardNode now uses name’.

e draw tree edge now respects phantom.

v2.0.1 (2016,/02/20)

New functionality:

e current and siblings, current and siblings reversed

e Add * argument to \useforestlibrary.
Bugfixes:

e Correctly mangle option/register names to pgfmath names (§3.18).
e Refer to parent (not node) anchor in calign=edge midpoint.

e Accept key history in Nodewalk config.
v2.0.0 (2016/01/30) 35

Backwards incompatible changes (without a compat key — sorry!):

e The unintended and undocumented way to specify defaults using \forestset{.style={...}}
(see question Making a certain tree style the default for forest at TEX SE) does not work anymore.
(Actually, it has never truly worked, and that’s why it has not compat key.) Use default
preamble.

e Renamed augmented assignment operator (option)- for prepending to (toks) and (keylist) options
+(option). A new (option)- is defined for keylist options and means “delete key from keylist.”

e Short nodewalk steps are not simply styles anymore: use define short step to define them.

Backwards incompatible changes with a compat key:

in a1l compat=1.0-stages
Processing of given options, which is now exposed, and the new keylists default preamble

and preamble is now included at the start of the default stages style. When changing stages,
the instruction to process these keylists must now be given explicitely.

in -a11 compat=1.0-forstep

In v1.0, a spatial propagator for (step) could never fail. This turned out to be difficult to debug.
In this version, when a propagator steps “out of the tree”, an error is raised by default. Check
out on invalid to learn how to simulate the old behaviour without using this compatibility key.

in -a11 compat=1.0-rotate

This version of the package introduces option rotate and autoforwards it to node options.
This is needed to handle the new FOREST anchors (§3.17). However, in some rare cases (like
the tree on the title page of this manual) it can lead to a discrepancy between the versions, as
the time when the value given to rotate is processed is different. 1.0-rotate removes option
rotate.

35The year of the release date in the package was wrong ... 2015.

99

http://tex.stackexchange.com/questions/167972/making-a-certain-tree-style-the-default-for-forest

in -a11 compat=1.0-name

Documentation of v1.0 requested that node names be unique, but this was not enforced by
the package, sometimes leading to errors. v2.0 enforces node name uniqueness. If this causes
problems, use this compatibility key. In most cases using name’ instead of name should fix the
problem without using compatibility mode.

These keys have been renamed:

old new compat key (all but the last are in -most)
node walk for nodewalk3® 1.0-nodewalk
for for group 1.0-for

for all next for following siblings 1.0-forall
for all previous for preceding siblings 1.0-forall
for ancestors’ for current and ancestors 1.0-ancestors
(for) linear next (for) next node 1.0-linear
(for) linear previous (for) previous node 1.0-linear
triangle roof (library linguistics) 1.0-triangle
/tikz/fit to tree /tikz/fit to=tree®’ 1.0-fittotree
begin forest, end forest none (use stages) 1.0-stages
end forest, end forest none (use stages) 1.0-stages

Good news:

e Added temporal propagators before packing node and after packing node.
e Much improved nodewalks, see §3.8 and §3.5.1.

e Implemented looping mechanisms and more conditionals, see §3.9.
e Implemented library support and started filling up the libraries:

— linguistics: sn edges,nice empty nodes, draw brackets, c-commanded and c-commanders

— edges: forked edges and folder
e Implemented aggregate functions, see §3.14.
e Added key default preamble.
e Implemented anchors parent, children, first, last, etc.
e Added key split and friends.
e Implemented sorting of children, see §3.11.
e Introduced registers, see §3.6.
e Implemented handlers .option, .register and .process args.

e Implemented several friends to process keylist, introduced processing orders and draw
tree method.

e Added the optional argument ((stages)) to the forest environment and \Forest macro.

e Implemented autoforwarding.

e Implemented flexible handling of unknown keys using unknown to.

e Implemented pgfmath functions min_1, max_1, min_s, max_s.

e Implemented augmented assignment operator (keylist option)- for removing keys from keylists.
e Implemented a generalized /tikz/fit to key.

e Implemented a very slow FOREST-based indexing system (used to index this documentation) and
included it in the gallery (§5.2).

e Added some minor keys: edge path’, node format’, create’ and plain content.

e Added some developer keys: copy command key, typeout.
Bugfixes:

e In computation of numeric tree-structure info, when called for a non-root node.

36Nodewalks are much improved in v2.0, so some syntax and keys are different than in v1.0!
37The v1.0 key /tikz/fit to tree also set inner sep=0; the v2.0 key /tikz/fit to does not do that.

100

e TikZ’s externalization internals (signature of \ tikzexternal@externalizefig@systemcall@uptodatech:
have changed: keep up to date, though only formally.

e delay was not behaving additively.

e name, alias and baseline didn’t work properly when setting them for a non-current node.
e Augmented assignments for count options were leaking ‘.0pt’.

e create didn’t work properly in some cases.

e triangle (now roof in linguistics) didn’t use cycle in the edge path

6.1.3 v1.0
v1.0.10 (2015/07/22)

e Bugfix: a left-over debugging \typeout command was interfering with a forest within tabular,
see this question on TeX.SE.
e A somewhat changed versioning scheme ...
v1.09 (2015/07/15)

e Bugfix: child alignment was not done in nodes with a single child, see this question on TeX.SE.

v1.08 (2015/07/10)

e Fix externalization (compatibility with new tikz features).

v1.07 (2015/05/29)

e Require package elocalloc for local boxes, which were previously defined by package etex.

v1.06 (2015/05/04)

e Load etex package: since v2.la, etoolbox doesn’t do it anymore.

v1.05 (2014/03/07)
e Fix the node boundary code for rounded rectangle. (Patch contributed by Paul Gaborit.)

v1.04 (2013/10/17)

e Fixed an externalization bug.

v1.03 (2013/01/28)

e Bugfix: options of dynamically created nodes didn’t get processed.

e Bugfix: the bracket parser was losing spaces before opening braces.

e Bugfix: a family of utility macros dealing with affixing token lists was not expanding content
correctly.

e Added style math content.

e Replace key tikz preamble with more general begin draw and end draw.

e Add keys begin forest and end forest.

v1.02 (2013/01/20)

Reworked style stages: it’s easier to modify the processing flow now.

Individual stages must now be explicitely called in the context of some (usually root) node.
Added delay n and if have delayed.

Added (experimental) pack’.

Added reference to the style repository.

v1.01 (2012/11/14)

e Compatibility with the standalone package: temporarily disable the effect of standalone’s
package option tikz while typesetting nodes.

e Require at least the [2010/08/21] (v2.0) release of package etoolbox.

e Require version [2010/10/13] (v2.10, res-revision 1.76) of PGF/TikZ. Future compatibility: adjust
to the change of the “not yet positioned” node name (2.10 @ — 2.10-csv PGFINTERNAL).

e Add this changelog.

v1.0 (2012/10/31) First public version

101

http://tex.stackexchange.com/questions/256509/odd-incompatibility-between-multi-line-forest-nodes-and-tabular
http://tex.stackexchange.com/questions/255309/elementary-forest-question-meaning-of-calign-parent-anchor-and-child-anchor
http://tex.stackexchange.com/questions/138986/error-using-tikzexternalize-with-forest/139145
https://github.com/sasozivanovic/forest-styles

6.2 Known bugs

If you find a bug (there are bound to be some ...), please contact me at saso.zivanovic@Qguest.arnes.si.

System requirements

This package requires ITEX and eTEX. If you use something else: sorry.
The requirement for IATEX might be dropped in the future, when I get some time and energy for a code-
cleanup (read: to remedy the consequences of my bad programming practices and general disorganization).
The requirement for eTEX will probably stay. If nothing else, FOREST is heavy on boxes: every node
requires its own ... and consequently, I have freely used eTEX constructs in the code ...

pgf internals
FOREST relies on some details of PGF implementation, like the name of the “not yet positioned” nodes.
Thus, a new bug might appear with the development of PGF. If you notice one, please let me know.

Edges cutting through sibling nodes

In the following example, the R—B edge crosses the AAA node, although ignore edge is set to the default
false.

R (108)
| \begin{forest}
calign=first
AAAAAAAA [RIAAAAAAAAAANNAAAAAAAAAANNAAAAAAAAAA ,align=center,base=bottom] [B]]
AAAAAAAAAA \end{forest}

AAAAAAAAAA B

This happens because s-distances between the adjacent children are computed before child alignment (which
is obviously the correct order in the general case), but child alignment non-linearly influences the edges.
Observe that the with a different value of calign, the problem does not arise.

R (109)
//// \begin{forest}

calign=last
[RTAAAAAAAAAANNAAAAAAAAAANNAAAAAAAAAA ,align=center,base=bottom] [B]]
\end{forest}

AAAAAAAAAA
AAAAAAAAAA
AAAAAAAAAA B

While it would be possible to fix the situation after child alignment (at least for some child alignment
methods), T have decided against that, since the distances between siblings would soon become too large.
If the AAA node in the example above was large enough, B could easily be pushed off the paper. The
bottomline is, please use manual adjustment to fix such situations.

Orphans

If the 1 coordinates of adjacent children are too different (as a result of manual adjustment or tier alignment),
the packing algorithm might have nothing so say about the desired distance between them: in this sense,
node C below is an “orphan.”

(110)
\begin{forest}
for tree={s sep=0,draw},
[R[A] [B][C,1*=2][D] [E]]
\end{forest}

To prevent orphans from ending up just anywhere, I have decided to vertically align them with their
preceding sibling — although I'm not certain that’s really the best solution. In other words, you can rely
that the sequence of s-coordinates of siblings is non-decreasing.

The decision also influences a similar situation illustrated below. The packing algorithm puts node E
immediately next to B (i.e. under C): however, the monotonicity-retaining mechanism then vertically aligns
it with its preceding sibling, D.

102

mailto:saso.zivanovic@guest.arnes.si

\begin{forest}
for tree={s sep=0,draw},
[R[A[B,tier=bottom]] [C] [D] [E,tier=bottom]]
\end{forest}

Obviously, both examples also create the situation of an edge crossing some sibling node(s). Again, I
don’t think anything sensible can be done about this, in general.
6.3 Acknowledgements

This package has turned out to be much more successful and widespread than I could have ever imagined
and I want to thank all the users for the trust. Many of you have also contributed to the package in some
way: by providing comments and ideas, sending patches, reporting bugs and so on. To you, I'm doubly
grateful! I will not even try to list you all here, as the list is getting too long for me to maintain, but I do
want to mention one person, a member of the friendly community at the excellent and indispensable TEX
— IMTEX Stack Exchange and the author of the very first FOREST-based package, Prooftrees: without cfr’s
uncountable questions, answers, bug reports and ideas, FOREST would be a much poorer package indeed.

References

[1] Donald E. Knuth. The TeXbook. Addison-Wesley, 1996.
[2] Till Tantau. TikZ & PGF, Manual for Version 2.10, 2007.
[3] Till Tantau. TikZ & PGF, Manual for Version 3.0.0, 2013.

103

(111)

http://tex.stackexchange.com
http://tex.stackexchange.com
http://ctan.org/pkg/prooftrees

Color legend: definition, example, other. If an entry belongs to a library, the library name is given in
parenthesis. All page numbers are hyperlinks, and definitions in text are hyperlinked to this index.

Symbols

L 8,9, 10,

12, 17-19, 41, 45, 45, 47, 55, 59, 70, 73, 74, 79, 83
! (boolean “not”) process instruction 65, 67
(autowrapped toks option)’ augmented assignment .. 35
(count option)’ augmented assignment 36
(dimen 0pti0n> ’ augmented assignment 36
(keylist option> ’ augmented assignment 36
(count option)’* augmented assignment 36
(dimen 0pti0n> ’% augmented assignment 36
(count 0ption> ’+ augmented assignment 36
(dimen Opti0n> ’+ augmented assignment 36
(count Opti0n> ’- augmented assignment 36
(dimen 0pti0n> ’- augmented assignment 36
(count option)’: augmented assignment 36
(dimen Opti0n> ’: augmented assignment 36
* short step L e 58
count option)* augmented assignment 36

12, 36, 43, 102

(dimen option)* augmented assignment
+

(autowrapped toks option) augmented assignment .. 35
+(keylist option) augmented assignment 35, 99
+(toks option) augmented assignment 20, 35, 35, 99

+ (chain instructions) process instruction 65, 66, 67

(autowrapped toks option)+ augmented assignment .. 35

(count option>+ augmented assignment 36
(dimen opti0n>+ augmented assignment 1, 16, 29, 36, 79
(keylist option)+ augmented assignment 35, 83
(toks option)+ augmented assignment 35, 35
(autowrapped toks option)+’ augmented assignment . 35
+(autowrapped toks option)’ augmented assignment . 35
— (toggle ascending/descending order (negate)) process
instruction 557 65, 68
(count option)- augmented assignment 36
(dimen option)— augmented assignment 36, 44
(keylist option)- augmented assignment 35, 99, 100
“level step . v ov v i i i 32, 97
—level’ step ... 32, 97
-parent anchor 97
(count Opti0n>: augmented assignment 36
(dimen option>: augmented assignment 36

< (comparison: (argi) < (argz)?) process instruction
65, 68, 68, 68
............................. 58

> (comparison: (argi) > (argz)?) process instruction

< short step

........................ 65, 68, 68, 68
> short step . . . oo oo e e e 57
? (conditional (if ... then ... else)) process instruction 65, 68
(relative node name) . (option) assignment 35
(option) assignment 35
(option) assignment 35
& (boolean “and”) process instruction 65, 67, 97
| (boolean “or”) process instruction 65, 67, 97
_ (no-op) process instruction .. 19,19, 65, 65, 66, 67, 67
1.0-ancestors compat value 100
1.0-fittotree compat value 100
1.0-for compat value, 100
1.0-forall compat value 100
1.0-forstep compat value 22, 98, 99
1.0-1linear compat valueoo..n... 100
1.0-name compat value 100
1.0-nodewalk compat value 100
1.0-rotate compat value 99

1.0-stages compat value 98, 99, 100
1.0-triangle compat value 100
2.0-anchors compat valueu.... 97
2.0-delayn compat value 97
2.0-edges compat value 97
2.0-folder compat value 97
2.0-forkededge compat value 97
2.0.2-delayn compat value 98
2.0.2-wrapnpgfmathargs compat value 98
2.1.1-1o0ps compat value 96
Numbers
1shortstep 9, 13, 32, 57
2 Short SteP « v v v e 9, 32, b7
3short step . . o vttt 9, 32, 57
4 short step . oo v v 9, 32, 57
Sshortstep 9, 32, 57
6 short step 9, 32, 57
T Short Step « v v v v v et e e e 9, 32, b7
8short step .« v vttt 9, 32, 57
Oshortstepo oo 9, 32, 57
A

action character bracket key 20, 21, 21, 24, 24

.28, 28, 29, 43, 100

after packing node propagator

afterthought style 24, 33, 47
.aggregate aggregate 69, 69, 70
aggregate pgfmath function 69
aggregate
.aggregate 69, 69, 70
LAVETAZE . . 69
count ... 69, 96
MAX . ot 69
min L. 69
product 69
CSUIM &« v vt 18, 18, 69, 69, 70
aggregate_average pgfmath function 69
aggregate_count pgfmath function 69
aggregate_max pgfmath function 69
aggregate_min pgfmath function 69
aggregate nregister 69, 69
aggregate postparse nodekey 18, 69, 70
aggregate postparse macro nodekey 70
aggregate postparse value
int ... 70
MACTO .\ vttt e et et e 70
MOME . .ot ittt e 70
print 70
aggregate_product pgfmath function 69
aggregate result register 69, 69
aggregate_sum pgfmath function 69
aggregate value register 69, 70
aliasnodekey 1, 46, 101
alias’ nodekey 46

align option
align value

center ..., 15, 37, 79, 102
first ... 5
left ... 37
right L 37
all compat valuet iiii e 22
alsonodekey 33, 96

104

ancestorsstep 1, 32, 53, 73
anchor anchor 40, 71, 83
anchor forest €8 . v v v v v v vt 71
anchor option 10,

10, 14, 33, 38, 39, 39, 40, 40, 44, 71, 74, 78, 83
anchor

—parent 97
anchor, 40, 71, 83
child anchor 45, 45, 71
—children 71
children 71, 77, 81, 82, 100
-children first 71
children first 71
—children first’ 71
children first’ 71
—children last 71
children last 71
-children last’ 71
children last’ 71
—children’ 71
children’ 71
first 71, 100
first? .. 71
last ..o 71, 100
last? ... 71
north 77
-parent 71
parent 71, 77, 81, 82, 97, 100
parent anchor 45, 45, 71
-parent first 71
parent first 1, 97
-parent first’ 71
parent first’ 71
-parent last 71
parent last 71, 97
-parent last’ 71
—parent’ 71
parent’ 71
south 77
append dynamic tree 1, 62, 62
append’ dynamic tree 63
append’’ dynamic tree 63
assignment
(relative node name). (option) 35
(option) il 35
(option) 35
augmented assignment
(autowrapped toks option)’ 35
(count option)’ 36
(dimen option)’ 36
(keylist option)’ 36
(count option)’* 36
(dimen option)’* 36
(count option)’+ L. 36
(dimen option)’+ 36
(count option)’~ L. 36
(dimen option)’= 36
(count option)’: 36
(dimen option)?: 36
(count option)* 36
(dimen option)* 12, 36, 43, 102
+(autowrapped toks option) 35
+(keylist option) 35, 99
+(toks option) 20, 35, 35, 99
(autowrapped toks option)+ 35

(count option)+ 36
(dimen option)+ 1, 16, 29, 36, 79
(keylist option)+ 35, 83
(toks option)+ L. 35, 35
(autowrapped toks option)+’ 35
+(autowrapped toks option)’ 35
(count option)= L. 36
(dimen option)- 36, 44
(keylist option)= 35, 99, 100
(count option): 36
(dimen option): 36
Autoforward nodekey 33, 33
autoforward node key 33, 40, 43, 99, 100
Autoforward register nodekey 33, 91
autoforward register nodekey 33
autoforward register’ nodekey 33
autoforward’ nodekey iiii 33
(autowrapped toks) type (of options and registers)
......................... 6, 35, 35, 85
.average aggregateo oo 69
B
bshort step e 58
bbasevalue 38, 73
backstep 56, 56, 58, 73
band fit value 42, 42
base option 13, 13, 37, 37, 38, 102
base value
D e 38, 73
bottom, 13, 38, 102
L7 38
TOD - 13, 38
baseline node key 13, 15, 46, 46, 47, 96, 101
before computing xy propagator ... 25,28, 29, 43, 43

before drawing tree propagator . 1,25, 28, 29, 44, 44
before packing propagator 25, 28, 28
before packing node propagator . 28, 28, 43, 98, 100
before typesetting nodes propagator
.................. 1, 25, 28, 59, 62, 74, 83
begin draw nodekey 29, 101
(boolean) type (of options and registers) 36
bottom base value 13, 38, 102
bracket key
action character 20, 21, 21, 24, 24
closing bracket 24
new node 24
opening bracket 24, 24
set afterthought 24
\bracketResume macro 24
\bracketset macro 20, 21, 24
branch step - . . .o v e 32, 48, 54, 54, 77, 98
branch’ step 32, 54, 76, 77
break nodekey 61
C
C (to uppercase) process instruction 65, 68
C (to lowercase) process instruction 65, 68
Cshortstep 58
c-commanded (linguistics) (linguistics) step 76
c-commanded step 22, 32, 54, 76, 100
c-commanders (linguistics) (linguistics) step 76
c-commanders Step o....e.a .. 32, 54, 100
calign option 5, b, 17, 26, 29,

40, 40, 41, 41, 43, 44, 74, 78, 83, 95, 99, 102, 102
calign angle nodekeyc.o.uon... 41

105

calign child nodekey 41
calign primary angle option 41, 41, 41
calign primary child option 41, 41, 41
calign secondary angle option 41, 41, 41
calign secondary child option 41
calign value
center 40
child 40, 41
child edge 40, 41
edge midpoint 40, 99
first 5, 29, 40, 102
fixed angles 40, 43, 44, 78
fixed edge angles 41, 41, 43, 44, 78, 98
last ..o 40, 102
midpoint 40
calign with current nodekey 41
calign with current edge nodekey 41
center alignvalue 15, 37, 79, 102
center calignvalue 40
child calignvalue 40, 41
child anchor anchor 45, 45, 71
child anchor option

...... 5,5, 7,39, 44, 44, 45, 71, 74, 77, 81, 83
child edge calignvalue 40, 41
—children anchor, . 71
children anchor 71, 77, 81, 82, 100
children step 1,

6, 13, 15, 17, 18, 18, 29, 32, 48, 52, 70, 78, 79
—-children first anchor 71
children first anchor 71
-children first’ anchor 71
children first’ anchor 71
—-children last anchor 71
children last anchor 71
-children last’ anchor 71
children last’ anchor 71
children reversedstep 32, 52
—children’ anchor 71
children’ anchoro . 71
closing bracket bracket key 24
compat package option 22, 32, 95, 97-100
compat value

1.0-ancestors 100
1.0-fittotree 100
1.0-for 100
1.0-forall 100
1.0-forstep 22,98, 99
1.0-linear 100
1.0-name 100
1.0-nodewalk 100
1.0-rotate 99
1.0-stages 98, 99, 100
1.0-triangle 100
2.0-anchors 97
2.0-delayn, 97
2.0-edges 97
2.0-folder 97
2.0-forkededge 97
2.0.2-delayn, 98
2.0.2-wrapnpgfmathargs 98
2.1.1-1o0ops 96
all .. 22
MOST . . vttt 22
MOME . v v vttt e e e e 23
silent 23, 98

compute Xy stage 25, 26, 4244
compute xy stagestyle 25,29, 43
conditional
if (boolean option) 59
if (option) 6, 17, 18, 29, 38, 59, 70, 83
T 1,6, 7, 58, 59, 59, 59, 60, 68, 74, 89
if (count option)> 59, 97
if (count option)< 59, 97
if (count register)> 59
if (count register)< 60
if current nodewalk empty 60, 97
if (dimen option)> 59, 97
if (dimen option)< 59, 97
if (dimen register)> 59
if (dimen register)< 59
if in (toks option) 38, 59
if in saved nodewalk 60
if node drawn 30, 98
if nodewalk empty 60
if nodewalk valid 60
where (boolean option) 60
where (option) 6, 6, 7, 18, 21, 34, 60, 60, 74, 78, 79
where 6, 60
where (count option)> 60, 97
where (count option)< 60, 97
where (count register)> 60
where (count register)< 60
where (dimen option)> 60, 97
where (dimen option)< 60, 97
where (dimen register)> 60
where (dimen register)< 60
where in (toks option) 42, 60
where in saved nodewalk 60
where nodewalk empty 60
where nodewalk valid 60
content option 1,6,6,7, 13, 16-18,

18, 19-21, 24, 29, 33, 34, 37, 38, 38, 39, 41,
42, 55, 59, 61, 62, 66, 70, 70, 73, 74, 78, 79, 83

content format option 29, 38, 38, 39, 79
content tonodekey 24, 33
copy command key nodekey 33,100
copy name template dynamictree 63
<count) type (of options and registers) 36
.count aggregate 69, 96
create dynamictree 62, 101
create’ dynamic tree 62, 100
current step 32, 42, 49, 50, 51, 56, 58
current and ancestorsstep 32, 53, 100
current and following nodes step 32, 53
current and following siblings step 32, 53
current and following siblings reversed step .
.............................. 32, 53
current and preceding nodes step 32, 53
current and preceding siblings step 32, 53
current and preceding siblings reversed step .
.............................. 32, 53
current and siblingsstep 32, 53, 96, 99
current and siblings reversed step 32, 53, 99
D
d (dimexpr) process instruction 65, 67
debug package option 23, 48
debug option
nodewalks 48

debug value

dynamics 23

nodewalks 23

PTOCESS . .t vttt it e e 23
declare autowrapped toks node key 37
declare autowrapped toks register nodekey ... 37
declare boolean nodekey 37
declare boolean register nodekey 37
declare count nodekeyoou.... 37
declare count register nodekey 37
declare dimen nodekeyot 37
declare dimen register nodekey 37
declare keylist nodekey 37
declare keylist register nodekey 37
declare toks nodekey 37, 83
declare toks register nodekey 37, 87
default preamble register 7,7, 25, 33,99, 100
define long step nodekey 57, 58, 58
define long step option

make for 58

NATES oot i e 58, 58

strip fake steps 58
define short stepnodekey 58, 99

delay propagator

delay n propagator

6, 6, 16-19, 21, 27, 28, 28, 34,
38, 39, 41, 42, 61, 62, 62, 63, 70, 74, 78, 83, 101
28, 28, 60, 97, 98, 101

descendants step 5, 13, 15-19, 32, 39, 52, 59, 83
descendants breadth-firststep 32, 52
descendants breadth-first reversed step 32, 53
descendants children-first step 17, 32, 52
descendants children-first reversed step 32, 52
descendants reversedstep 32, 52
(dirnen) type (of options and registers) 36
do dynamics nodekey 27, 28
do untilloop 61, 61
do until nodewalk empty loop 61
do until nodewalk validloop 61
do while loop v v i v it i i e 61
do while nodewalk empty loop 61
do while nodewalk validloop 61
draw brackets (linguistics) (linguistics) node key .. 79
draw brackets nodekey 32, 100
draw brackets compact (linguistics) (linguistics) node
key oo e 79
draw brackets wide (linguistics) (linguistics) node
key oo e 79
draw tree stage 25, 26, 26, 29, 30, 39, 44, 47
draw tree boXxnodekey 26, 29, 76
draw tree edge nodekey 30, 98, 99
draw tree edge’ nodekey 30, 99
draw tree edges processing order nodewalk style 30
draw tree method style 29, 29-31, 100
draw tree node nodekey 30
draw tree node’ nodekey 30, 99
draw tree nodes processing order nodewalk style 30
draw tree processing order nodewalk style . 30, 30
draw tree stagestyle 25, 26, 29
draw tree tikzstyle 30, 30
draw tree tikz processing order nodewalk style . 30
draw tree tikz’ nodekey 30, 30, 99
draw tree’ stage 26, 26, 29
dynamic nodes named nodewalk 62, 99
dynamic tree
append 1, 62, 62
append’ ... 63

append’’ ... 63
copy name template 63
create i 62, 101
create’ i 62, 100
insert after 62
insert after’ 63
insert after’’ 63
insert before 62
insert before’ 63
insert before’’ 63
prepend 62
prepend’ 63
prepend’’ 63
TEMOVE . ittt ittt et 63
replace by o L. 63, 99
replace by’ oL, 63
replace by’’ L L, 63
set root 26, 51, 63, 63
SOTL . ..o 55, 63
SOTt’ ... 63
dynamics debug value 23
E
edge option 1, 13, 30, 44, 44, 45, 59
edge label option 45, 45, 45, 59
edge midpoint calignvalue 40, 99
edge path option 30, 39, 44, 45, 45, 82
edge path’ nodekey 45, 100
end draw node key 29, 101
environment
forest 3,7, 20, 23, 24, 26, 31, 33, 62, 75, 76, 98, 100
€rror on invalidvalue 49, 57
error if real on invalid value 57, 97
every step Nodewalk option 48, 49, 50, 54
every step register 48, 49, 50, 54, 56, 73
external package option 20, 22
external/context nodekey 75
external/depends on macro nodekey 20, 75
external/optimize nodekey 75
F
Fshortstep 57
fshortstep 58
fake nodewalk key 48, 56, b7, 77
fake on invalid value 57, 88
filterstepvviiii 32, 54, 54, 98
first anchor L. 71, 100
firststep o 32, 51
first alignvalue, 5
first calignvalue 5, 29, 40, 102
first leafstep 32, 51, 57
first leaf’ step 32, 51, 88
first’ anchor 71
fit option 13, 41, 41, 42, 47, 74
/tikz/fit to tikzkey 9,9, 23, 47, 48, 100
fit value
band 42, 42
rectangle 42, 42
tight 41, 41
fixed angles calignvalue 40, 43, 44, 78
fixed edge angles calign value 41, 41, 43, 44, 78, 98
folder (edges) (edges) nodekey 82
folder nodekey 82, 97, 98, 100
folder indent (edges) (edges) register 82
following nodes step 32, 53

107

following siblings step 32, 53, 100

following siblings reversed step 32, 53

for (step) propagator .. 1, 5,6, 6,7, 10-17, 17, 18—
20, 20, 22, 22, 24, 25, 29, 31, 31, 32, 38, 39,
41, 42, 44, 45, 46-52, 54, 56, 58, 59, 60, 61,
62, 63, 70, 74, 78, 79, 81-83, 88, 96, 98-100, 102

for -1 propagator e e e e e 32
for -2 propagator 32
for -3 propagator 32
for -4 propagator 32
for -5 propagator L. 32
for -6 propagator 32
for -7 propagator 32
for -8 propagator 32
for -9 propagator 32
for 1 propagator 32
for 2 propagator L. 32
for 3 propagator 32
for 4 propagator 32
for 5 propagator 32
for 6 propagator 32
for 7 propagator oo 32
for 8 propagator 32
for 9 propagator 32
for tree’ propagator 32, 79
\Forest macro 23, 24, 98, 100
/forest path 48
forest environment, 3

7, 20, 23, 24, 26, 31, 33, 62, 75, 76, 98, 100
forest cs

anchoro, 71
B0 i 71
id .. 71
1 71, 81, 82
DNAME .« o v vttt e e e 71
S e 71
forest option
stages ... 23, 98
/forest/nodewalk path 47, 48
\forestapplylibrarydefaults macro 22
\forestcompat macro 23
\foresteoption macro 36, 36, 39
\foresteregister macro 36
forestloopcount pgfmath function 61, 97
(forestmath) 37, 54, 55, 59, 61, 64, 64, 69
\forestnovalue macro 36
\forestoption macro 16, 16, 18, 36, 36, 39, 45, 86, 98
\forestregister macro 36
\forestset macro 7, 20, 23, 26, 28, 31, 33
\forestStandardNode macro 16, 75, 99
fork sep (edges) (edges) option 81
forked edge (edges) (edges) nodekey 81
forked edge nodekey 81, 97
forked edge’ (edges) (edges) node key 81
forked edge’ nodekey 81
forked edges (edges) (edges) nodekey 81
forked edges nodekey 66, 81, 98, 100
forwardstep 56, 58
G
get max s tree boundary nodekey 47
get min s tree boundary nodekey 47
given options propagator 24, 25, 28, 99
go forest cs 71
GP1 (linguistics) (linguistics) node key 79

GPl nodekey 4,5, 25, 26, 34
SLOUP StED « v v v v v vt 32, 54, 58, 100
grow option 9, 9, 28, 39, 40, 41, 42, 42, 43, 71, 72, 77, 82
grow’ nodekey 42, 42, 44, 66, 74, 81, 82
grow’’ nodekey 42,42, 42
H
handler
.nodewalk style 27, 59, 97, 99
.option, 36, 64, 64, 88, 97, 100
.pgfmath 1,

13, 16, 17, 29, 36, 39, 41, 42, 64, 64, 70, 74
.process 19, 19, 20, 20, 64, 64, 65, 66, 66, 67, 86, 89
.PTOCESS arESot iii 34, 64, 100
.register 36, 64, 64, 100
.wrap n pgfmath args

...... 18, 18, 19, 19, 51, 64, 64, 66, 74, 83, 98
.wrap pgfmath arg 18,29, 41, 51, 64, 73, 83
.wrap value 6, 35, 51, 64

history Nodewalk option 48, 49, 49, 50, 54, 99
I

id forest cs ... 71

id option 49

id readonly option 46, 48, 55, 57, 63, 73, 98

ddstep oo v 32, 51

if (boolean option) conditional 59

if (option) conditional 6, 17, 18, 29, 38, 59, 70, 83
1, 6, 7, 58, 59, 59, 59, 60, 68, 74, 89

if conditional

if (count option)> conditional 59, 97
if (count option)< conditional 59, 97
if (count register)> conditional 59
if (count register)< conditional 60
if current nodewalk empty conditional 60, 97

if (dimen option)> conditional 59, 97

if (dimen option)< conditional 59, 97
if (dimen register)> conditional 59
if (dimen register)< conditional 59
if have delayed propagator 28, 60, 60, 101
if have delayed’ propagator 60, 60
if in (toks option) conditional 38, 59
if in saved nodewalk conditional 60
if node drawn conditional 30, 98
if nodewalk empty conditional 60
if nodewalk valid conditional 60
ignore option 42
ignore edge option 42, 43, 45, 102
inherited on invalid value 49
insert after dynamictree 62
insert after’ dynamictree 63
insert after’’ dynamictree 63
insert before dynamictree 62
insert before’ dynamic tree 63
insert before’’ dynamictree 63
instr pgfmath function 74
int aggregate postparse value 70
invalid pgfmath function 73
J
jump backstep 56
jump forwardstep, 56
K
(keylist) type (of options and registers) 28, 35, 35

108

L
L ((non-consuming) load) process instruction 65, 69, 97
Lshort step . . . v v i i ittt e e 57
1 ((consuming) load) process instruction 65, 69, 97
1 forest cs ..o i 71, 81, 82
loption, 1, 10, 10, 11,
11, 12, 12, 13, 15, 15, 16, 18, 25, 26, 29, 40,
41, 42, 43, 43, 44, 71, 74, 74, 79, 82, 83, 102, 102
Ishortstep i i 9, 57
1 sep option 10, 13, 15, 15, 16, 29, 37, 39, 43, 43, 74, 82
label optiono 39, 47, 47, 98
last anchor 71, 100
last step . .. oo 32, 51, 57
last calignvalue 40, 102
last dynamic node step 32, 51, 62, 99
last leaf step 32, 51, 57
last leaf’ step 32, 51
last validstep 56, 57, 58, 61
last valid on invalid value 57, 97
last valid’ stepo i it 57
last? anchor 71
1EAVES StED v v v e e e 32, 53, 97
left alignvalue, 37
level readonly option .1, 12, 13, 18, 21, 46, 53, 74, 98
level step . . v v v v v v it 32, 53, 98
level reversedstepoo... 32, 53
level reversed<step 32, 53
level reversed> stept iii it 53
—level Step . .o it e e 53
—level? step ... i 53
1evel< Sstep . v v v v it e 32, 53
level> step . v v v vt e e 53
load step .« oo e i 32, 54, 54, 56, 62
loop
do until 61, 61
do until nodewalk empty 61
do until nodewalk valid 61
do while 61
do while nodewalk empty 61
do while nodewalk valid 61
repeat, 1, 58, 61, 62
until ... 61
until nodewalk empty 61
until nodewalk valid 61
while 58, 61
while nodewalk empty 61
while nodewalk valid 61, 77
M
macro aggregate postparse value 70
macro
\bracketResume 24
\bracketset 20, 21, 24
\Forest 23, 24, 98, 100
\forestapplylibrarydefaults 22
\forestcompat 23
\foresteoption 36, 36, 39
\foresteregister 36
\forestnovalue 36
\forestoption 16, 16, 18, 36, 36, 39, 45, 86, 98
\forestregister 36
\forestset 7, 20, 23, 26, 28, 31, 33
\forestStandardNode 16, 75, 99
\useforestlibrary 22,99
make for define long step option 58

math content nodekey 39, 101
.max aggregate oo e 69
max step oL o e 32, 55, 55
max in nodewalk step 56
max in nodewalk’ step 56
max X readonly option 29, 46
max y readonly option 46, 96
max_1 pgfmath function 74, 100
max_s pgfmath function 74, 100
MAXS SEEP « v v v v e e e e e e e e 32, 56
maxs in nodewalk step 56
midpoint calignvalue 40
.min aggregate i e e 69
Minstep . ..o v 1, 32, 55, 55
min in nodewalk step 56
min in nodewalk’ step 56
min X readonly option 29, 46
min y readonly option 46
min_1 pgfmath function, 757 100
min_s pgfmath function 74, 100
MINS Step . v v v v 32, 55
mins in nodewalk step 56
most compat value L 22
N
N short step . . o v v v vttt 57
n (numexpr) process instruction 65, 67, 68
n readonly option0 ... 13,
16-18, 18, 19, 38, 46, 46, 48, 57, 58, 62, 83, 98
nshortstep i i 8, 57
MSEED « v v v e e 32, 47, 48, 51, 58, 61
n args define long step option 58, 58
n children readonly option
..... 6, 6, 13, 17-19, 29, 46, 55, 70, 74, 83, 98
n’ readonly option 38, 46, 62, 98
N7 SEEP « e 32, 51
name forest €8o i e e 71
name option 8, 8, 15, 24, 39, 41, 42, 46, 46, 63, 100, 101
name step e e e e e 19, 32, 46, 51
name’ nodekey 46, 99, 100
named nodewalk
dynamic nodes 62, 99
new node bracket key 24
next step L. 32, 51, 57, 58
next leaf step 32, 51, 57
next node step 32, 51, 100
next on tierstep 32, 51, 58
nice empty nodes (linguistics) (linguistics) node key 78
nice empty nodes nodekey 96, 100
no edge nodekey 15, 29, 44, 44, 45, 74, 79, 83
node format option 39, 39
node format’ nodekey 39, 100
node key
aggregate postparse 18, 69, 70
aggregate postparse macro 70
alias 1, 46, 101
alias’ 46
also ... 33, 96
Autoforward 33, 33
autoforward 33,40, 43,99, 100
Autoforward register 33, 91
autoforward register 33
autoforward register’ 33
autoforward’ 33
baseline 13, 15, 46, 46, 47, 96, 101

109

begin draw 29, 101

break i . 61
calign angle 41
calign child 41
calign with current 41
calign with current edge 41
content to, 24, 33
copy command key 33,100
declare autowrapped toks 37
declare autowrapped toks register 37
declare boolean 37
declare boolean register 37
declare count 37
declare count register 37
declare dimen 37
declare dimen register 37
declare keylist 37
declare keylist register 37
declare toks 37, 83
declare toks register 37, 87
define long step 57, 58, 58
define short step 58, 99
do dynamics 27, 28
draw brackets (linguistics) (linguistics) 79
draw brackets 32, 100
draw brackets compact (linguistics) (linguistics)
................................. 79
draw brackets wide (linguistics) (linguistics) . 79
draw tree box 26, 29, 76
draw tree edge 30, 98, 99
draw tree edge’ 30, 99
draw tree node 30
draw tree mode’ 30, 99
draw tree tikz’ 30, 30, 99
edge path’ 45, 100
end draw 29, 101
external/context 75
external/depends on macro 20, 75
external/optimize 75
folder (edges) (edges) 82
folder 82, 97, 98, 100
forked edge (edges) (edges) 81
forked edge 81, 97
forked edge’ (edges) (edges) 81
forked edge’ 81
forked edges (edges) (edges) 81
forked edges 66, 81, 98, 100
get max s tree boundary 47
get min s tree boundary 47
GP1 (linguistics) (linguistics) 79
GP1 4,5, 25, 26, 34
grow’ 42, 42, 44, 66, 74, 81, 82
grow’’ ... 42,42, 42
math content 39, 101
name’ ... 46, 99, 100
nice empty nodes (linguistics) (linguistics) ... 78
nice empty modes 96, 100
no edge 15, 29, 44, 44, 45, 74, 79, 83
node format’, 39, 100
node walk 32
node walk/after walk 32
node walk/before walk 32
node walk/every step 32
Nodewalk 32, 48, 49, 98
on invalid 88

pack’ ... 26, 29, 101
plain content 39, 100
process delayed 27, 96
process keylist 25, 26, 27, 28, 60, 100
process keylist register 25, 27, 27
process keylist’ 27, 27, 28, 60, 96
process keylist’’ 27
roof (linguistics) (linguistics) 78
Toof ... 72, 100, 101
save and restore register 33, 97
save history 56
sn edges (linguistics) (linguistics) T
snoedges ... 7, 72, 100
sort by 1, 55, 55, 56, 63, 68
split 33, 88, 100
split option 33, 34, 83, 97
split register 34, 97
TeX .. 34, 34, 34, 36, 48, 76
TeX? 34, 76
TeX?? 34, 34, 76
typeout 34, 100
typeset node 1, 26, 28, 29
unautoforward 33
unknown key error 28, 35
unknown to 28, 31, 35, 35, 100
use as bounding box 47, 47
use as bounding box’ 46, 47
node options option . 28, 31, 33, 39, 39, 40, 43, 47, 99
node walk nodekey 32
node walk/after walk nodekey 32
node walk/before walk nodekey 32
node walk/every step nodekey 32
Nodewalk nodekey 32, 48, 49, 98
Nodewalk nodewalk keyo 31
Nodewalk step ... 31,32, 48, 49, 49, 50, 54, 57, 98, 99
nodewalk nodewalk key 48
nodewalk stept 1,

20, 20, 31, 32, 4749, 50, 50, 56, 61, 73, 88, 98
nodewalk key

fake 48, 56, 57, 77
Nodewalk 31
nodewalk, 48
on invalid 48-50, 57, 57, 61, 97
options, 48, 57
real 49, 56
strip fake steps 57, 58, 61
Nodewalk option
every step 48, 49, 50, 54
history 48, 49, 49, 50, 54, 99
on invalid 48, 49, 50, 57, 99
.nodewalk style handler 27, 59, 97, 99
nodewalk style
draw tree edges processing order 30
draw tree nodes processing order 30
draw tree processing order 30, 30
draw tree tikz processing order 30
(keylist option) processing order 26, 27
processing order 6, 26, 27, 30, 60, 100
typeset nodes processing order 26
nodewalk’ stepttt 32, 50, 50
nodewalks debug option 48
nodewalks debug value 23
none aggregate postparse value 70
none compat value Lo oo 23
north anchor 7

110

not (boolean option) 36
(0]
0 (option) process instruction . 19, 19, 65, 66, 66, 67, 68
O (expand once) process instruction 65, 66
O ShOTE SEED v v v v v e e e e e e e e e e e e e 58
on invalid nodekey 88
on invalid nodewalk key 48-50, 57, 57, 61, 97
on invalid Nodewalk option 48, 49, 50, 57, 99
on invalid value
ETTOT o i e it e 49, 57
error if real 57, 97
fake 57, 88
inherited oL 49
last valid 57, 97
opening bracket bracket key 24, 24
.option handler 36, 64, 64, 88, 97, 100
option
align 13, 13, 15, 37, 37, 38, 39, 79, 102
anchor 10,

10, 14, 33, 38, 39, 39, 40, 40, 44, 71, 74, 78, 83
base 13, 13, 37, 37, 38, 102
calign 5, 5, 17, 26, 29,

40, 40, 41, 41, 43, 44, 74, 78, 83, 95, 99, 102, 102
calign primary angle 41, 41, 41
calign primary child 41, 41, 41
calign secondary angle 41, 41, 41
calign secondary child 41
child anchor

...... 5,5,7,39,44, 44,45, 71, 74, 77, 81, 83
content 1,6, 6,7, 13, 16-18,

18, 19-21, 24, 29, 33, 34, 37, 38, 38, 39, 41,

42, 55, 59, 61, 62, 66, 70, 70, 73, 74, 78, 79, 83
content format 29, 38, 38, 39, 79
edge 1, 13, 30, 44, 44, 45, 59
edge label 45, 45, 45, 59
edge path 30, 39, 44, 45, 45, 82
fit ... 13, 41, 41, 42, 47, 74
fork sep (edges) (edges) 81
grow . 9,9, 28, 39, 40, 41, 42, 42, 43, 71, 72, 77, 82
O 49
ignore 42
ignore edge 42, 43, 45, 102
1 1, 10, 10, 11,

11, 12, 12, 13, 15, 15, 16, 18, 25, 26, 29, 40,

41, 42, 43, 43, 44, 71, 74, 74, 79, 82, 83, 102, 102
1 sep 10, 13, 15, 15, 16, 29, 37, 39, 43, 43, 74, 82
label 39, 47, 47, 98
name .. 8,8, 15,24, 39, 41, 42, 46, 46, 63, 100, 101
node format 39, 39
node options . 28, 31, 33, 39, 39, 40, 43, 47, 99
parent anchor 5,5, 7,39, 44, 45, 45, 71, 77, 81, 83

phantom 8,9, 12, 13, 16, 18, 19, 21, 30, 39, 39, 96, 99
Pin ... 39, 47, 47, 98
reversed 42, 43, 72, 82
rotate 16, 33, 43, 72, 82, 99
S 10, 25, 26, 29, 40, 43, 43, 71, 74, 82
s sep 1,10, 11, 11, 12, 12, 13, 15, 44, 78, 82, 83, 102
tier 5,5,6,6,7, 34, 44, 74, 79, 102
tikz 8,9,09, 10, 17, 30, 47, 73, 74, 79, 83, 98
X 25, 26, 29, 30, 40, 44
Vo 1, 25, 26, 29, 30, 40, 44, 44
options nodewalk key 48, 57
originstep 32, 51, 56, 58

P

P (pgfmath) process instruction 64, 65, 66, 66, 66
P short step « v v v v v e i e e e e e 57
P (process) process instruction 65, 66, 66, 97
pPshortstep oo 8, b7
packstage 25, 26, 40, 42, 43
pack stagestyle 25, 28, 43
pack’ nodekey 26, 29, 101
package option

compat ... 22, 32, 95, 97-100

debug L L. 23, 48

external 20, 22

tikzecshack o L. 23, 71

tikzinstallkeys 23
—parent anchor 71
parent anchor 71,77, 81, 82, 97, 100
parent step 32, 47, 48, 51, 57, 63, 78
parent anchor anchor 45,45, 71
parent anchor option

......... 5,5, 7,39, 44, 45, 45, 71, 77, 81, 83
-parent first anchor 71
parent first anchor 71, 97
-parent first’ anchor 71
parent first’ anchor 71
-parent last anchor 71
parent last anchor 71, 97
-parent last’ anchor 71
-parent’ anchor, 71
parent’ anchor 71
path

/forest 48
/forest/modewalk 47, 48
pgfmath function
aggregate 69
aggregate_average 69
aggregate_count 69
aggregate_maxoioon... 69
aggregate_min 69
aggregate_product 69
aggregate_sum 69
forestloopcount 61, 97
instr 74
invalid o 73
max_l 74, 100
MAX_S & vt et e e 74, 100
min_ 1l ... 73, 100
MiNn_S e 74, 100
strecat ... 74, 83
strequal 74, 83
valid 61, 73
.pgfmath handler 1,

13, 16, 17, 29, 36, 39, 41, 42, 64, 64, 70, 74
phantom option 8,

9, 12, 13, 16, 18, 19, 21, 30, 39, 39, 96, 99
Pinoption 39, 47, 47, 98
plain content nodekey 39, 100
preamble register 24, 25, 33, 99
preceding nodes step 32, 53
preceding siblingsstep 32, 53, 100
preceding siblings reversedstep 32, 53
prepend dynamic tree 62
prepend’ dynamic tree 63
prepend’’ dynamictree 63
previous step 32, 51, 57
previous leaf step 32, 51, 57

111

previous nodestep 32, 51, 100
previous on tierstep 32, 51, 58
print aggregate postparse value 70
(process) 64, 64, 66
.process handler

19, 19, 20, 20, 64, 64, 65, 66, 66, 67, 86, 89
process debug value 23
.process args handler 34, 64, 100
process delayed node key 27, 96
process keylist node key 25, 26, 27, 28, 60, 100
process keylist register nodekey 25, 27, 27
process keylist’ nodekey 27, 27, 28, 60, 96
process keylist’’ nodekey 27

(keylist option) processing order nodewalk style 26, 27
processing order nodewalk style . 6, 26, 27, 30, 60, 100
process instruction

! (boolean “not”) 65, 67
+ (chain instructions) 65, 66, 67
- (toggle ascending/descending order (negate)) 55, 65, 68
< (comparison: (argi) < (arga)?) 65, 68, 68, 68
> (comparison: (argi) > (args)?) 65, 68, 68, 68
? (conditional (if ... then ... else)) 65, 68
& (boolean “and”) 65, 67, 97
| (boolean “or”) 65, 67, 97
~ (no-op) ... 19, 19, 65, 65, 66, 67, 67
C (to Uppercase) 65, 68
C (tolowercase) 65, 68
d (dimexpr) 65, 67
L ((non-consuming) load) 65, 69, 97
1 ((consuming) load) 65, 69, 97
N (MUMEXPT) « v vt v vttt 65, 67, 68
0 (option) 19, 19, 65, 66, 66, 67, 68
0 (expand ONCE) .« « v v v v ti i 65, 66
P (pgfmath) 64, 65, 66, 66, 66
P (process), 65, 66, 66, 97
R (register) 19, 19, 20, 65, 66, 68
r (reverse (key)list) 65, 69
S ((non-consuming) save) 65, 68
S ((consuming) save) 65, 68
t (mark as text) 55, 65, 68, 68
U (UNGITOUP) + v v v e e e e e e e 65, 68, 97
W ((non-consuming) wrap) 65, 66, 67
W ((consuming) wrap) 19, 19, 20, 65, 66, 66, 67
X (fullyezpand) 65, 66
.product aggregate 69
propagator
after packing node 28, 28, 29, 43, 100
before computing xy 25, 28, 29, 43, 43
before drawing tree 1, 25, 28, 29, 44, 44
before packing 25, 28, 28
before packing node 28, 28, 43, 98, 100
before typesetting nodes 1, 25, 28, 59, 62, 74, 83
delay 6, 6, 16—-19, 21, 27, 28, 28, 34,
38, 39, 41, 42, 61, 62, 62, 63, 70, 74, 78, 83, 101
delay n 28, 28, 60, 97, 98, 101
for (step) 1,5,6,6,7, 10-17, 17, 18—

20, 20, 22, 22, 24, 25, 29, 31, 31, 32, 38, 39,
41, 42, 44, 45, 46-52, 54, 56, 58, 59, 60, 61,
62, 63, 70, 74, 78, 79, 81-83, 88, 96, 98-100, 102

for -1 ... 32
for -2 ... 32
for -3 ... 32
for -4 32
for =5 ... 32
for -6 ... 32

for -7

for -8 32
for -9 ... 32
for 1 32
for 2 ... 32
for 3 ... 32
for 4 32
for 5 ... 32
for 6 32
for 7 ... 32
for 8 32
for 9 ... 32
for tree’ 32,79
given options 24, 25, 28, 99
if have delayed 28, 60, 60, 101
if have delayed’ 60, 60
where 39
R
R (register) process instruction 19, 19, 20, 65, 66, 68
Rshortstep 58
r (reverse (key)list) process instruction 65, 69
Trshortstepl e 58
readonly option
P 46, 48, 55, 57, 63, 73, 98
level 1, 12, 13, 18, 21, 46, 53, 74, 98
MAX X e et e e e e e 29, 46
MAK T oeov et e e e e 46, 96
MIN X et e 29, 46
min y ... 46
n 13, 16-18, 18, 19, 38, 46, 46, 48, 57, 58, 62, 83, 98
n children 6, 6, 13, 17-19, 29, 46, 55, 70, 74, 83, 98
N 38, 46, 62, 98
real nodewalk key 49, 56
rectangle fit value 42, 42
.register handler 36, 64, 64, 100
register
aggregate n 69, 69
aggregate result 69, 69
aggregate value 69, 70
default preamble 7,7, 25, 33,99, 100
every step 48, 49, 50, 54, 56, 73
folder indent (edges) (edges) 82
preamble 24, 25, 33, 99
tempboola 37
tempboolb L. 37
tempboolc 37
tempboold 37
tempcounta 37, 68
tempcountb 37
tempcountc 37
tempcountd 37
tempdima, ... 37
tempdimb 37
tempdimc 37
tempdimd L 37
tempdiml L. 37
tempdimla 37
tempdimlb L 37
tempdims, .. 37
tempdimsa 37
tempdimsb L 37
tempdimx 37
tempdimxa 37
tempdimxb L 37

tempdimy 37
tempdimya 37
tempdimyb L . 37
tempkeylista 33, 37
tempkeylistb 37
tempkeylistc 37
tempkeylistd 37
temptoksa 19, 37
temptoksb L o L 37
temptoksc 37
temptoksd 37
relative levelstep 32, 53
relative level reversedstep 32, 53
relative level reversed<step 32, 53
relative level reversed> step 53
relative level<stepouuunn..n 32, 53
relative level> step v i 53
(relative node name) ... 17,19, 35, 62, 70, 71, 73, 97
remove dynamic treeo oo 63
repeat loop 1, 58, 61, 62
replace by dynamictree 63, 99
replace by’ dynamictree 63
replace by’’ dynamictree 63
TEVEISE Step . . v v v v v v v it 32, 52, 54, 88
reversed option, .. 42,43, 72, 82
right alignvalue 37
roof (linguistics) (linguistics) nodekey 78
roof nodekey 72, 100, 101
root step 32, 51, 58, 63
root’ step 25, 26, 32, 51, 58, 61, 63
rotate option 16, 33, 43, 72, 82, 99
S
S ((non-consuming) save) process instruction 65, 68
S ((consuming) save) process instruction 65, 68
Sforestcs ... e 71
S option 10, 25, 26, 29, 40, 43, 43, 71, 74, 82
Sshort step 9, 57
S Sepoption ... o 1,
10, 11, 11, 12, 12, 13, 15, 44, 78, 82, 83, 102
SAVE SEED v v v e e 32, 54, 54
save and restore register nodekey 33, 97
save append step a. i 32, 54
save historynodekey 56
save prependstep 32, 54
set afterthought bracketkey 24
set root dynamic tree 26, 51, 63, 63
short step
K 58
S 58
> 57
1 9, 13, 32, 57
2 9, 32, 57
L 9, 32, 57
A 9, 32, 57
B 9, 32, 57
B 9, 32, 57
T 9, 32, 57
B 9, 32, 57
LS 9, 32, 57
b 58
C 58
F oo 57
o 58
L e 57

L 9, 57
N 57
¢ 8, b7
O e 58
P 57
< J S 8, 57
R 58
B 58
S 9, 57
L 8, 17, 17, 57
Ve 58
sibling step 32, 51, 57
siblingsstep 32, 53
siblings reversedstep 32, 53
silent compat value 23, 98
sn edges (linguistics) (linguistics) node key 7
sn edges node key 7,72, 100
sort dynamic tree 55, 63
sort step e 32, 55, 55
sort by nodekey 1, 55, 55, 56, 63, 68
sort’ dynamictree 63
SOTL’ step . . v . i 32, 55
south anchor 7
splitnodekey 33, 88, 100
split option nodekey 33, 34, 83, 97
split register nodekey 34, 97
stage
compute Xy 25, 26, 42-44
draw tree 25, 26, 26, 29, 30, 39, 44, 47
draw tree’ 26, 26, 29
Pack 25, 26, 40, 42, 43
typeset nodes 25, 26, 26, 29, 37, 40, 47
typeset modes’ 26
stages forest option 23, 98
stages style 23, 25, 2528, 98-101
step
“level ... 32, 97
—level’ ... 32, 97
ancestors 1, 32, 53, 73
back o 56, 56, 58, 73
branch 32, 48, 54, b4, 77, 98
branch’ 32, 54, 76, 77
c-commanded (linguistics) (linguistics) 76
c-commanded 22, 32, 54, 76, 100
c-commanders (linguistics) (linguistics) 76
c-commanders 32, 54, 100
children 1,

6, 13, 15, 17, 18, 18, 29, 32, 48, 52, 70, 78, 79
children reversed 32, 52
current 32, 42, 49, 50, 51, 56, 58
current and ancestors 32, 53, 100
current and following nodes 32, 53
current and following siblings 32, 53
current and following siblings reversed .

.............................. 32, 53
current and preceding nodes 32, 53
current and preceding siblings 32, 53
current and preceding siblings reversed

.............................. 32, 53
current and siblings 32, 53, 96, 99
current and siblings reversed 32, 53, 99
descendants 5, 13, 15-19, 32, 39, 52, 59, 83
descendants breadth-first 32, 52
descendants breadth-first reversed . 32,53
descendants children-first 17, 32, 52

113

descendants children-first reversed .. 32,52
descendants reversed 32, 52
filter 32, 54, 54, 98
first 32, 51
first leaf 32, 51, 57
first leaf’ 32, 51, 88
following nodes 32, 53
following siblings 32, 53, 100
following siblings reversed 32, 53
forward o . 56, 58
GLOUP . .ottt 32, 54, 58, 100
Id 32, 51
jump back 56
jump forward 56
last ..o 32, 51, b7
last dynamic node 32, 51, 62, 99
last leaf 32, 51, 57
last leaf’ 32, 51
last valid 56, 57, 58, 61
last valid’ 57
leaves .. .i i 32, 53, 97
level 32, 53, 98
level reversed 32, 53
level reversed< 32, 53
level reversed> 53
—level ... 53
—level’ L 53
level< ..t 32, 53
level> . .. 53
load i 32, 54, 54, 56, 62
MAX . oo e e e e 32, 55, 55
max in nodewalk 56
max in nodewalk’ 56
MAXS © vt ettt e e e e 32, 56
maxs in nodewalk 56
min 1, 32, 55, 55
min in nodewalk 56
min in nodewalk’ 56
Mins i 32, 55
mins in nodewalk 56
Do 32, 47, 48, 51, 58, 61
N 32, 51
NAME . . v ottt 19, 32, 46, 51
next 32, 51, 57, 58
next leaf 32, 51, 57
next node 32, 51, 100
next on tier 32, 51, 58
Nodewalk 31, 32, 48, 49, 49, 50, 54, 57, 98, 99
nodewalk 1,
20, 20, 31, 32, 47-49, 50, 50, 56, 61, 73, 88, 98
nodewalk’ 32, 50, 50
origin L. 32, 51, 56, 58
parent 32, 47, 48, 51, 57, 63, 78
preceding nodes 32, 53
preceding siblings 32, 53, 100
preceding siblings reversed 32, 53
previous, 32, 51, b7
previous leaf 32, 51, 57
previous mode 32, 51, 100
previous on tier 32, 51, 58
relative level 32, 53
relative level reversed 32, 53
relative level reversed< 32, 53
relative level reversed> 53
relative level< 32, 53

relative level> 53
TEVErSEettt 32, 52, 54, 88
TOOot 32, 51, 58, 63
root’ 25, 26, 32, 51, 58, 61, 63
SAVE . . 32, 54, 54
save append, 32, 54
save prepend 32, 54
sibling 32, 51, 57
siblings 32, 53
siblings reversed 32, 53
SOTL . ot 32, 55, 55
sort’? ... 32, 55
to tier 32, 51
tree o 1,5,7,

9,9, 10-12, 14-17, 26, 30, 32, 38, 39, 41, 42,
44, 45, 48, 52, 59, 60, 62, 74, 78, 81-83, 100, 102

tree breadth-first 32, 52
tree breadth-first reversed 32, 52
tree children-first 18, 32, 52, 70
tree children-first reversed 32, 52
tree reversed 32, 52
unique 32, 54, 97
walk and max 55
walk and maxs 56
walk and min L. 55
walk and mins 56
walk and reverse 32, 54
walk and save 32, 54
walk and save append 32, 54
walk and save prepend 32, 54
walk and sort 32, 55
walk and sort’ 32, 55
walk back 49, 56
walk forward 56
strcat pgfmath function 74, 83
strequal pgfmath function 74, 83
strip fake steps nodewalk key 57, 58, 61
strip fake steps define long step option 58
style
afterthought 24, 33, 47
compute xy stage 25, 29, 43
draw tree method 29, 29-31, 100
draw tree stage 25, 26, 29
draw tree tikz 30, 30
pack stage 25, 28, 43
stages 23, 25, 25-28, 98-101
typeset nodes stage 25, 28, 29
.Sum aggregate 18, 18, 69, 69, 70
T
t (mark as text) process instruction 55, 65, 68, 68
Thbasevalue Lo e 38
tempboola register 37
tempboolb register 37
tempboolc register L 37
tempboold register L. 37
tempcounta register 37, 68
tempcountb register L L 37
tempcountc register L. 37
tempcountd register L. 37
tempdima register 37
tempdimb register L. 37
tempdimc register 37
tempdimd register L. 37
tempdiml register 37

114

tempdimla register 37

tempdimlb register L 37
tempdims register L 37
tempdimsa register 37
tempdimsb register oL 37
tempdimx register 37
tempdimxa register 37
tempdimxb register 37
tempdimy register 37
tempdimya register 37
tempdimyb register L 37
tempkeylista register 33, 37
tempkeylistb register, 37
tempkeylistcregister 37
tempkeylistd register 37
temptoksa register L. 19, 37
temptoksb register L 37
temptoksc register L 37
temptoksd register o oL 37
TeX nodekey 34, 34, 34, 36, 48, 76
TeX’ nodekey 34, 76
TeX’’ nodekey 34, 34, 76
tier option 5,5,6,6,7, 34,44, 74, 79, 102
tight fitvalue 41, 41
tikz option .. 8,9,9, 10, 17, 30, 47, 73, 74, 79, 83, 98
tikz key

/tikz/fit to 9,9, 23, 47, 48, 100
tikzcshack package option 23,71
tikzinstallkeys package option 23
to tierstep 32, 51
(toks) type (of options and registers) 35, 35
top base valie 13, 38
treestep oo 1,5,7,

9,9, 10-12, 14-17, 26, 30, 32, 38, 39, 41, 42,
44, 45, 48, 52, 59, 60, 62, 74, 78, 81-83, 100, 102

tree breadth-firststep 32, 52
tree breadth-first reversed step 32, 52
tree children-firststep 18, 32, 52, 70
tree children-first reversed step 32, 52
tree reversedstep 32, 52
type (of options and registers)
(autowrapped toks) 6, 35, 35, 85
(boolean) 36
(count)l 36
(dimen) i i L. 36
(keylist) 28, 35, 35
(boks) 35, 35
typeout nodekey 34, 100
typeset node nodekey 1, 26, 28, 29
typeset nodes stage 25, 26, 26, 29, 37, 40, 47
typeset nodes processing order nodewalk style .. 26
typeset nodes stagestyle 25, 28, 29
typeset nodes’ stage 26
U
u (ungroup) process instruction 65, 68, 97
U short step 8, 17, 17, 57
unautoforward nodekey 33
unique step 32, 54, 97

unknown key error nodekey 28, 35
unknown to nodekey 28, 31, 35, 35, 100
until loopo 61
until nodewalk empty loop 61
until nodewalk validloop 61
use as bounding boX nodekey 47, 47
use as bounding box’ nodekey 46, 47
\useforestlibrary macro 22,99
\%

Vshortstep 58
valid pgfmath function 61, 73
\)\%

W ((non-consuming) wrap) process instruction .. 65, 66, 67

W ((consuming) wrap) process instruction
................. 19, 19, 20, 65, 66, 66, 67
walk and Max step . . . vt e e e e e 55
walk and maxs step i i 56
walk and minstep, 55
walk and mins stepot 56
walk and reverse step 32, 54
walk and savestep 32, 54
walk and save appendstep 32, 54
walk and save prependstep 32, 54
walk and sortstep 32, 55
walk and SOrt’ step 32, 55
walk back step 49, 56
walk forwardstep 56
where (boolean option) conditional 60
where (option) conditional
......... 6, 6, 7, 18, 21, 34, 60, 60, 74, 78, 79
where conditional, 6, 60
where propagator 39
where (count option)> conditional 60, 97
where (count option)< conditional 60, 97
where (count register)> conditional 60
where (count register)< conditional 60
where (dimen option)> conditional 60, 97
where (dimen option)< conditional 60, 97
where (dimen register)> conditional 60
where (dimen register)< conditional 60
where in (toks option) conditional 42, 60
where in saved nodewalk conditional 60
where nodewalk empty conditional 60
where nodewalk valid conditional 60
whileloop 58, 61
while nodewalk emptyloop 61
while nodewalk validloop 61, 77
.wrap n pgfmath args handler
...... 18, 18, 19, 19, 51, 64, 64, 66, 74, 83, 98
.wrap pgfmath arg handler . 18, 29, 41, 51, 64, 73, 83
.wrap value handler 6, 35, 51, 64
X
X (fully expand) process instruction 65, 66
Xoption . .. 25, 26, 29, 30, 40, 44
Y
yoption 1, 25, 26, 29, 30, 40, 44, 44

115

	Introduction
	Tutorial
	Basic usage
	Options
	Decorating the tree
	Node positioning
	The defaults, or the hairy details of vertical alignment

	Advanced option setting
	Wrapping
	Externalization
	Expansion control in the bracket parser

	Reference
	Package loading and options
	Invocation
	The bracket representation
	The workflow
	Stages
	Temporal propagators
	Drawing the tree

	Node keys
	Spatial propagators
	Various

	Options and registers
	Setting
	Reading
	Declaring

	Formatting the tree
	Node appearance
	Node position
	Edges
	Information about node
	Various

	Nodewalks
	Invoking (embedded) nodewalks
	Single-step keys
	Multi-step keys
	Operations
	History
	Miscellaneous
	Short-form steps
	Defining steps

	Conditionals
	Loops
	Dynamic tree
	Handlers
	Argument processor
	Aggregate functions
	Relative node names
	The forest coordinate system
	Anchors
	Additional pgfmath functions
	Standard node
	Externalization

	Libraries
	linguistics
	GP1

	edges

	Gallery
	Decision tree
	forest-index
	Memoize

	Past, present and future
	Changelog
	v2.1
	v2.0
	v1.0

	Known bugs
	Acknowledgements

	References
	Index
	Symbols
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

