
The knots Package: Documentation
Andrew Stacey

loopspace@mathforge.org

v2.4 from 2021/02/21

1 Pre-Introduction
This library is built on top of a package for manipulating PGF’s soft paths called
spath3. Version 2.0 of spath3 involved considerable reorganisation of the code. I
tried to ensure that this didn’t affect this library but it is extremely likely that I
wasn’t fully successful. If something that used to work no longer does, please do let
me know either by opening an issue on github (https://github.com/loopspace/
spath3) or at the above email.

That version of spath3 also introduced an alternative way of drawing knots
which involves breaking the paths at their crossing points and introducing actual
gaps. This makes it easier to do things like have the knots on non-uniform back-
grounds, and to style different parts of the knot differently such as illustrating a
3–colouring. To see how that works, look at the documentation of the spath3
TikZ library. Here’s an example of how to draw a knot with that library.

\begin{tikzpicture}[
use Hobby shortcut,
every trefoil component/.style={ultra thick, draw},
trefoil component 1/.style={red},
trefoil component 2/.style={blue},
trefoil component 3/.style={green},

]
\path[spath/save=trefoil] ([closed]90:2) foreach \k in {1,...,3} {

.. (-30+\k*240:.5) .. (90+\k*240:2) } (90:2);
\tikzset{spath/knot={trefoil}{8pt}{1,3,5}}
\end{tikzpicture}

1

loopspace@mathforge.org
https://github.com/loopspace/spath3
https://github.com/loopspace/spath3

2 Introduction
The knots package is a TikZ library for drawing knot (and similar) diagrams. It
provides a few useful styles and node shapes but its main contribution is the knot
environment. The knot environment allows you to draw some strands of a knot
(or braid or tangle or whatever – we shall use the imprecise term “knot” to refer
to any similar diagram) and then to modify the crossings via a simple interface.

The main part of this package was developed in response to a question on the
TeX-SX site by Jamie Vicary. The original question was Braid diagrams in TikZ.
Jamie’s comment (quoted below) was the inspiration for the mechanism of the
knot environment.

[It] would be really cool if it was possible to draw the curves, let
TikZ calculate all the intersection points automatically, and then tell it
to redraw the intersections according to an under/over specification...
do you think this is in the realm of plausibility?

3 Examples
Let us begin with an example. To use the library, simply load the tikz package
and add knots to the list of TikZ libraries that you load. For example, the
following in your preamble would work:

\usepackage{tikz}
\usetikzlibrary{knots}

Let’s draw a simple tangle (actually a braid).

\begin{tikzpicture}
\draw[red,ultra thick] (0,0) .. controls +(1,0) and +(-1,0) ..

(2,1) .. controls +(1,0) and +(-1,0) .. (4,0);
\draw[blue,ultra thick] (0,1) .. controls +(1,0) and +(-1,0) ..

(2,0) .. controls +(1,0) and +(-1,0) .. (4,1);
\end{tikzpicture}

2

http://tex.stackexchange.com
http://tex.stackexchange.com/q/32125/86

Now a common way to draw crossings for knots is to draw a gap in the under
strand through which the over strand passes. One way to achieve this in TikZ
is to draw the over strand twice, the first time with a thicker line width and the
colour of the background. We’ll draw it twice, once with background a different
colour to illustrate this.

\begin{tikzpicture}
\draw[red,ultra thick] (0,0) .. controls +(1,0) and +(-1,0) ..

(2,1) .. controls +(1,0) and +(-1,0) .. (4,0);
\draw[pink,double=blue,ultra thick,double distance=1.6pt] (0,1) ..

controls +(1,0) and +(-1,0) .. (2,0) .. controls +(1,0) and
+(-1,0) .. (4,1);

\draw[xshift=5cm,red,ultra thick] (0,0) .. controls +(1,0) and
+(-1,0) .. (2,1) .. controls +(1,0) and +(-1,0) .. (4,0);

\draw[xshift=5cm,white,double=blue,ultra thick,double
distance=1.6pt] (0,1) .. controls +(1,0) and +(-1,0) .. (2,0)
.. controls +(1,0) and +(-1,0) .. (4,1);

\end{tikzpicture}

Now the problem with this method is that there is no way to draw the red and
blue paths so that the blue is the over strand at the first crossing and the red at
the second. Either the blue path is always on top (as shown) or the red. One way
to resolve this is to split the paths and draw one of them in segments:

\begin{tikzpicture}
\draw[red,ultra thick] (0,0) .. controls +(1,0) and +(-1,0) ..

(2,1);
\draw[white,double=blue,ultra thick,double distance=1.6pt] (0,1)

.. controls +(1,0) and +(-1,0) .. (2,0) .. controls +(1,0) and
+(-1,0) .. (4,1);

\draw[white,double=red,double distance=1.6pt,ultra thick] (2,1) ..
controls +(1,0) and +(-1,0) .. (4,0);

\end{tikzpicture}

Another method (employed by the braids package) is to break the under path
either side of the crossing and not draw it there. This means that the order of
drawing doesn’t matter.

3

Both of these methods have their drawbacks (particularly for general knots as
opposed to the more structured braids) in that they require a detailed knowledge
of the pieces of the paths and the positions of the crossings. As pointed out by
Jamie Vicary in the above-quoted comment, TikZ should be able to compute these
itself.

That’s what this package does.
Let’s do the above example using this package. The main changes to the

drawing are that we use the command \strand rather than \draw and we enclose it
in the knot environment. When initially drawing the strands it is useful to provide
the option draft mode=strands. That’s because the detailed computation can
take a little time and so it is best only to do it when necessary. So on first run
through we get the following.

\begin{tikzpicture}
\begin{knot}[

draft mode=strands
]
\strand[red,thick] (0,0) .. controls +(1,0) and +(-1,0) .. (2,1)

.. controls +(1,0) and +(-1,0) .. (4,0);
\strand[blue,thick] (0,1) .. controls +(1,0) and +(-1,0) .. (2,0)

.. controls +(1,0) and +(-1,0) .. (4,1);
\end{knot}
\end{tikzpicture}

Once we’re happy with the positioning of the strands, we change the option
draft mode=strands to draft mode=crossings.

\begin{tikzpicture}
\path (2,1.5) (2,-.5);
\begin{knot}[

draft mode=crossings,
clip width=5,

]
\strand[red,ultra thick] (0,0) .. controls +(1,0) and +(-1,0) ..

(2,1) .. controls +(1,0) and +(-1,0) .. (4,0);
\strand[blue,ultra thick] (0,1) .. controls +(1,0) and +(-1,0) ..

(2,0) .. controls +(1,0) and +(-1,0) .. (4,1);
\end{knot}
\end{tikzpicture}

4

11

22 21

The \path (2,1.5) (2,-.5); is to extend the bounding box of the picture a
little upwards. The extra pieces are not used when computing the bounding box
of the picture so that it doesn’t change position on the page.

The extra information is that the strands and the crossings have been num-
bered. The crossings have also been rendered (the clip width option enlarges
the crossing gap to make it more obvious). Unfortunately, for both crossings the
red path is on top. We need to flip one of these crossings (the first). To do this,
we either use the command flipcrossings or the flip crossing key.

\begin{tikzpicture}
\path (2,1.5) (2,-.5);
\begin{knot}[

draft mode=crossings,
clip width=5,
flip crossing=1,

]
\strand[red,ultra thick] (0,0) .. controls +(1,0) and +(-1,0) ..

(2,1) .. controls +(1,0) and +(-1,0) .. (4,0);
\strand[blue,ultra thick] (0,1) .. controls +(1,0) and +(-1,0) ..

(2,0) .. controls +(1,0) and +(-1,0) .. (4,1);
\end{knot}
\end{tikzpicture}

11

22 21

Once we’re happy with it, we remove the draft mode option to render it in its
final form.

5

\begin{tikzpicture}
\begin{knot}[

clip width=5,
flip crossing=1,

]
\strand[red,ultra thick] (0,0) .. controls +(1,0) and +(-1,0) ..

(2,1) .. controls +(1,0) and +(-1,0) .. (4,0);
\strand[blue,ultra thick] (0,1) .. controls +(1,0) and +(-1,0) ..

(2,0) .. controls +(1,0) and +(-1,0) .. (4,1);
\end{knot}
\end{tikzpicture}

Here’s a more complicated example.

\begin{tikzpicture}
\node (A) at (0,4) [draw,minimum width=30pt,minimum

height=10pt,thick] {};
\begin{knot}[

clip width=5,
clip radius=8pt,

]
\strand [thick,only when rendering/.style={dashed}] (0,0)
to [out=up, in=down] (-1,1)
to [out=up, in=down] (0,2)
to [out=up, in=down] (-1.2,4)
to [out=up, in=down, looseness=0.7] (0,5.5)
to [out=up, in=down] (-2,7);
\strand [thick] (-1,0)
to [out=up, in=down] (1,2)
to [out=up, in=down] (A.south);
\strand [thick,blue] (1,0)
to [out=up, in=down] (-1,2)
to [out=up, in=down] (1.5,4)
to [out=up, in=right] (0,5.5)to [out=left, in=up] (-2,4)
to [out=down, in=up] (-2,0);
\strand [thick] (A.150)
to [out=up, in=down] (0.7,5.5)
to [out=up, in=down] (0,7);
\strand [thick] (A.30)
to [out=up, in=down] (-1,6)
to [out=up, in=down] (2,7);
\flipcrossings{6,2,9,5,11}
\end{knot}
\end{tikzpicture}

6

One feature about this example is the only when rendering key. The gaps
are made by drawing the strand again with extra thickness in the background
colour. If the dashed option were always in play for that strand, the gap would
be dashed which would spoil the effect. So the only when rendering key gathers
those options (such as a dash pattern) which should only be applied to the rendered
strand and not to the redraw that creates the gap.

Here’s another example.

7

\newcommand{\motif}[1]{
to ++(180+#1:0.50) arc (270+#1:150+#1:0.15)
to ++(60+#1:0.50) arc (-30+#1:150+#1:0.15)
to ++(240+#1:0.25) arc (150+#1:330+#1:0.25)
to ++(60+#1:0.55) arc (150+#1: 30+#1:0.20)

}
\newcommand{\celticknot}{\motif{0}\motif{120}\motif{240}}
\begin{tikzpicture}
\begin{knot}[

line width=2pt,
line join=round,
clip width=2,
scale=5,
consider self intersections,
ignore endpoint intersections=false,
background color=white,
only when rendering/.style={

draw=red,
double=white,
double distance=6pt,
line cap=round,

}
]
\strand (0,0) \celticknot;
\flipcrossings{1,3,6,8,10}
\end{knot}
\end{tikzpicture}

In this case the strand is a single path. In the standard case cross-
ings are only considered between separate strands (since the algorithm used

8

by TikZ means that a strand intersects itself infinitely often). The key
consider self intersections gets round this by “exploding” the strand into
segments and considering each as a separate path with regard to finding the in-
tersections.

A path consists of a series of lines and Bézier cubics. The “explosion” of a path
uses this decomposition. Unfortunately, even that is not always enough as it is
possible for a Bézier cubic to self-intersect. The consider self intersections
also splits these Bézier curves in two to ensure that this doesn’t happen1. To
disable this, use the consider self intersections=no splits option. This is
the recommended option.

\begin{tikzpicture}
\begin{knot}[

consider self intersections,
draft mode=crossings,

]
\strand (0,0) .. controls +(3,1) and +(-3,1) .. (1,0);
\end{knot}
\begin{knot}[

xshift=3cm,
consider self intersections=no splits,
draft mode=crossings,

]
\strand (0,0) .. controls +(3,1) and +(-3,1) .. (1,0);
\end{knot}
\end{tikzpicture}

11

1

11

Finally, given that TikZ has to do some heavy computation to find the in-
tersections, it is worth considering using the external library of TikZ to avoid
having to do this on every run.

4 Usage
4.1 The knot Environment
This package provides a knot environment for including in a tikzpicture toknot

\strand render a knot. This takes an optional argument which is passed to \tikzset and
can be used to configure the knot. Within that environment, specific strands are
defined using the \strand command (in place of a \path or \draw). Further keys
can be specified on the strands.

1Computing when this is strictly necessary is difficult so it splits more than it needs to to
ensure that enough are done.

9

Specifying the crossings to be flipped can be done either using the keyflip crossing
\flipcrossings flip crossing or the macro \flipcrossings. The latter can take a comma

separated list of crossings to flip. The former takes a single crossing but
can be extended to a comma separated list using the .list handler as in
flip crossing/.list={1,2,3} (this is what \flipcrossings does internally).

There is also a macro \redraw which redraws a strand in the neighbourhood\redraw
of a point. This is effectively what happens for the crossings and can be used
to fix something that wasn’t done correctly by the main algorithm. It takes two
arguments, the strand number and the point at which to render the strand, as in
\redraw{2}{(1,1)}.

4.2 Keys
The various keys are as follows. The majority of the keys are in the /tikz/knot diagram
family, but it does its best to pass unknown keys down to /tikz/. The keys pro-
cessed by the knot environment are automatically in this family but the keys
processed by the \strand command are not. If a standard key (in the option to
the knot environment) doesn’t work, try prefixing it with /tikz/ or /pgf/.

• The style every knot diagram is executed at the start of the knot environ-every knot diagram
ment.
Note that it is inside the knot diagram family so if setting it outside (say,
in the preamble) use \tikzset{knot diagram/every knot diagram}.

• The crossings of a knot are given coordinates of the form <name> <number>.name
The default name is knot. The name key renames it.

• The contents of every strand are applied to every strand. By default thisevery strand
contains the draw key so if resetting it you should probably ensure that it
still has the draw key.
Note that it is inside the knot diagram family so if setting it outside (say,
in the preamble) use \tikzset{knot diagram/every knot diagram}.

• The key only when rendering={<style>} is applied to the strand onlyonly when rendering
when it is actually drawn and not when it is used to cut out part of the
underlying path.
Note that there are actually two versions of this key: one in the knot diagram
family and one in the /tikz family. This is so that it works equally well in
the argument to the knot environment and the \strand command.

• When a strand is split into pieces then the intersection library findsignore endpoint
intersections “false positives” in that neighbouring pieces intersect at their endpoints.

The code ignores such intersections between neighbouring pieces. The
ignore endpoint intersections (which is true by default) means that
all intersections that are near an endpoint are ignored whether or not they
are with the next or previous piece of that strand. The celtic knot example of
the previous section sets this to false to ensure that it gets all intersections.

10

• The key consider self intersections=<option> handles the splitting fa-consider self
intersections cility so that strands can self intersect. The options are true, false, and

no splits. It is false at the start, and the default option is true. The dif-
ference between true and no splits is as to whether segments are further
split to avoid all self intersections.

• The clip radius=<length> is the radius of the clip region around eachclip radius
crossing.

• The end tolerance=<length> is the distance at which an intersection isend tolerance
considered as being near an endpoint (for simplicity, it uses the ℓ1–metric).

• The clip width=<factor> is the multiplier for the thickness of the “wipe-clip width
out” path relative to the line width of the actual path.

• The flip crossing=<number> key flips the <number> crossing.flip crossing

• The keys background colour=<colour> and background color=<color>background colour
background color set the background colour for the crossings.

• The style in every intersection is applied before rendering each cross-every intersection>
intersection <number> ing, with intersection <number> applied just before that specific crossing.

These can be used to change how the over-strands are rendered when they
are redrawn. For an example on using every intersection, see Section 4.3.

• The key draft mode=<option> sets the different styles for aiding with ren-draft mode
dering the knot. The options are strands, crossings, or off. The strands
option just renders the strands with no crossings. The crossings option
renders the crossings and labels the strands and crossings. The off option
renders the crossings without the labels.

• The style draft/crossing label is applied to each of the crossing labels.draft/crossing label
The labels are actually pins attached to coordinates at the crossings. This
style is applied to the pin itself. The default is:
overlay,
fill=white,
fill opacity=.5,
text opacity=1,
text=blue,
pin edge={blue,<-}

• The style draft/strand label is applied to each of the strand labels. Thedraft/strand label
default is:
overlay,
circle,
draw=purple,
fill=white,
fill opacity=.5,

11

text opacity=1,
text=purple,
inner sep=0pt

4.3 Celtic Knots
By “Celtic knot” here, I mean a knot drawn in a way to suggest a carved object.
Usually, this is achieved by using the double style to outline the path. This inter-
acts a little oddly with how the knots package redraws the curve near crossings
which can result in small artefacts visible when the diagram is viewed (my un-
derstanding is that they are not present when the diagram is printed). There is,
however, a way to get these diagrams right, as this section will show.

I will just note here that there is the https://ctan.org/pkg/celtic package which
works for a particular type of Celtic knots. If your Celtic knot fits what that
package can produce, it is a better choice. See that package for details.

Back to what this package can provide. When rendering a crossing, the over-
strand is redrawn clipped to a small region around the crossing. The clipping,
however, interacts badly with the double effect. The double effect is achieved by
drawing the line twice, once thicker with the outer colour and once thinner with
the inner colour. At the boundary of the clipping region there is “bleed through”
of the outer colour into the inner colour, at least when the image is displayed on a
screen. If the inner colour is darker, this is not noticeable. But with a Celtic style
knot then the inner colour is usually a lighter colour, such as the page colour, and
so the effect is visible.

The solution to this is to exploit the fact that when using the Celtic style then
one doesn’t actually want gaps in the under-strand to show that it is the under-
strand. The Celtic style makes it very obvious which strand is which without
that. These gaps are achieved by drawing the over-strand in a thicker line with
the colour of the background. This is almost exactly what the double key does. So
rather than using the double key directly, we use the mechanism of how the knot
crossings are rendered to reproduce the effect. This avoids the artefacts because
when the knot library draws the two paths then it clips them to slightly different
sized regions.

12

\begin{tikzpicture}[scale=0.8]
\begin{knot}[

consider self intersections=no splits,
end tolerance=1pt,
line join=round,
clip width=1,
ignore endpoint intersections=true,
background color=red,
every intersection/.style={

line width=13pt,
only when rendering/.style={

draw=white,
line width=9pt,
double=none,

}
},
only when rendering/.style={

red,
line width=2pt,
double=white,
double distance=9pt,

},
flip crossing/.list={2,3,6,8}

]

\strand
(0.5,1) to [out=north, in=south]
(2.5,4) to [out=north, in=south]
(0.5,7) -- (0.5,7) -- (0.5,7.5) --
(1,7.5) to [out=east, in=west]
(3,6.5) to [out=east, in=225]
(4.5,7.5) to [out=45, in=south]
(5.5,9) to [out=north, in=-45]
(4.5,10.5) to [out=135,in=east]
(3,11.5) to [out=west,in=45]
(1.5,10.5) to [out=225,in=north]
(0.5,9) -- (0.5,8.5) --
(1,8.5) to [out=east, in=south]
(2.5,10) to [out=north, in=east]
(1,11.5) -- (0.5,11.5) --
(0.5,11) to [out=south, in=north]
(2.5,8) to [out=south, in=north]
(0.5,5) -- (0.5,4.5) --
(1,4.5) to [out=east, in=west]
(3,5.5) to [out=east, in=135]
(4.5,4.5) to [out=-45, in=north]
(5.5,3) to [out=south, in=45]
(4.5,1.5) to [out=225, in=east]
(3,0.5) to [out=west, in=-45]
(1.5,1.5) to [out=135, in=south]
(0.5,3) -- (0.5,3.5) --
(1,3.5) to [out=east, in=north]
(2.5,2) to [out=south, in=east]
(1,0.5) -- (0.5,0.5) -- (0.5,1);
\end{knot}

\end{tikzpicture}

13

4.4 Other Styles
The other things defined by this package are for drawing knot diagrams when the
user knows in advance either the locations of the crossings or can arrange that the
paths are drawn in the correct order. In these circumstances the knot environment
is overkill.

This knot=<colour> style sets up a doubled path with inner colour the givenknot
knot gap colour (or the current draw colour if not given) and outer colour the knot back-

ground colour. The width of the inner line is the current line width and the full
width is controlled by the knot gap=<factor> key which is initially set to 3 (thus
giving a line’s width either side).

14

\begin{tikzpicture}[knot gap=7]
\draw[thin,knot=red] (-1,-1) -- (1,1);
\draw[thin,knot=red] (-1,1) -- (1,-1);
\begin{scope}[xshift=2.5cm]
\draw[knot=red] (-1,-1) -- (1,1);
\draw[knot=red] (-1,1) -- (1,-1);
\end{scope}
\begin{scope}[xshift=5cm]
\draw[thick,knot=red] (-1,-1) -- (1,1);
\draw[thick,knot=red] (-1,1) -- (1,-1);
\end{scope}
\end{tikzpicture}

This package also defines some node shapes to help draw knot and link dia-knot crossing
knot over cross

knot under cross
knot horiz
knot vert

grams. The idea with these is to place a node of the appropriate type at each
crossing and then link them accordingly. The node shapes are knot crossing,
knot over cross, knot under cross, knot vert, knot horiz. The two styles
knot over cross and knot under cross are crossings, knot vert and knot horiz
are for when resolving the crossings in a diagram. By judicious use of the \foreach
command, a family of resolved link diagrams can be produced.

\begin{tikzpicture}[every node/.style={draw,red}]
\node[knot over cross] at (1,0) {};
\node[knot under cross] at (2,0) {};
\node[knot vert] at (3,0) {};
\node[knot horiz] at (4,0) {};
\end{tikzpicture}

The node knot crossing is not meant to be drawn, it is an empty shape.
Its value is in that it defines more anchors than the usual rectangle shape. For
each of the 8 main compass directions, it defines anchors at 2, 4, 8, 16, and 32
times further out. This can be useful for designing curves that enter and exit
the crossing gracefully at particular directions. When using this node shape, the
crossing itself is easiest to draw by using the center anchor for the strands that
form the over cross.

15

\begin{tikzpicture}[every path/.style={red,thick}, every
node/.style={transform shape, knot crossing, inner sep=1.5pt}]

\node[rotate=45] (tl) at (-1,1) {};
\node[rotate=-45] (tr) at (1,1) {};
\node (m) at (0,-1) {};
\node (b) at (0,-2) {};
\draw (b) .. controls (b.4 north west) and (m.4 south west) ..

(m.center);
\draw (b.center) .. controls (b.4 north east) and (m.4 south east)

.. (m);
\draw (m) .. controls (m.8 north west) and (tl.3 south west) ..

(tl.center);
\draw (m.center) .. controls (m.8 north east) and (tr.3 south

east) .. (tr);
\draw (tl.center) .. controls (tl.16 north east) and (tr.16 north

west) .. (tr);
\draw (b) .. controls (b.16 south east) and (tr.16 north east) ..

(tr.center);
\draw (b.center) .. controls (b.16 south west) and (tl.16 north

west) .. (tl);
\draw (tl) -- (tr.center);
\end{tikzpicture}

5 Other Relevant Packages by the Same Author
Another tool for drawing knot diagrams is provided by the hobby package which
draws smooth curves through a prescribed set of points. This can be combined
with the facilities of this package but also has some features of its own that make
it suitable for drawing knot diagrams.

For braids themselves, there is the braids package which allows input specifi-
cation in the form of a word in the braid group.

16

6 Troubleshooting
The diagrams drawn by this package can involve quite complicated calculations
and they don’t always turn out as expected. There are plenty of questions on
TeX-SX about this package, but sifting through them can be tricky. Through
answering some of them, I’ve developed a few strategies for figuring out what’s
going on. This section details some of what can go wrong and some of those
strategies for finding out what’s going on.

6.1 Small Diagrams
A common situation when the diagrams don’t always work out is when the diagram
is relatively small. The defaults in this library are set for a diagram of a few
centimetres across. Some of the key properties are stored as dimensions which
means that they don’t naturally scale but have to be reset. In particular, the
end tolerance and clip radius are dimensions with defaults 14pt and 10pt
respectively.

The end tolerance is used to weed out false intersections that occur when a
strand is split into pieces. Therefore, if the consider self intersections key
is not set then end tolerance is largely unneeded (though it is still used) so can
safely be set to something very small.

The effect of this can be seen in the following (where to make the issue evident,
I’ve made end tolerance larger rather than make the diagram small).

\begin{tikzpicture}
\begin{knot}[

end tolerance=1.5cm
]

\strand[red] (0,0) to[out=0,in=180] ++(1,1);
\strand[blue] (0,1) to[out=0,in=180] ++(1,-1);
\end{knot}
\begin{knot}
\strand[red] (1.5,0) to[out=0,in=180] ++(1,1);
\strand[blue] (1.5,1) to[out=0,in=180] ++(1,-1);
\end{knot}
\end{tikzpicture}

The clip radius determines how much of the diagram is redrawn near a
crossing. If the crossings are very close together, the redraws can interfere with
each other.

17

https://tex.stackexchange.com/search?q=knots
https://tex.stackexchange.com/search?q=knots

\begin{tikzpicture}
\begin{knot}[

clip radius=.6cm,
flip crossing=2
]

\strand[red] (0,0) to[out=0,in=180] ++(1,.6) to[out=0,in=180]
++(1,-.6);

\strand[blue] (0,1) to[out=0,in=180] ++(1,-.6) to[out=0,in=180]
++(1,.6);

\end{knot}
\begin{knot}[flip crossing=2]
\strand[red] (2.5,0) to[out=0,in=180] ++(1,.6) to[out=0,in=180]

++(1,-.6);
\strand[blue] (2.5,1) to[out=0,in=180] ++(1,-.6) to[out=0,in=180]

++(1,.6);
\end{knot}
\end{tikzpicture}

6.2 Strategies
• draft mode=crossings

This is useful to check that all the intersections are actually being found.
Any that aren’t might be due to end tolerance being too large. Or if
consider self intersections is set to no splits then some self inter-
sections might not be found.

• background clip and clip styles.
When a crossing is redrawn, the over strand is clipped to a circle centred
on the crossing. First a background path is drawn to “wipe out” the under
strand and then the over strand is drawn. The clip circle for the background
path is slightly smaller than the over path to avoid an issue whereby faint
artefacts are visible (called crop circles in one question on TeX-SX). Rather
than use a \clip directly, I use \path[background clip] and \path[clip]
which means that these styles can be modified to show the region that is
being used. A useful style is:
background clip/.append style={

preaction={
fill=gray,
fill opacity=.5,

}
}

18

https://tex.stackexchange.com/q/188447/86

\begin{tikzpicture}
\begin{knot}[

clip radius=.6cm,
flip crossing=2,
background clip/.append style={

preaction={
fill=gray,
fill opacity=.5,

}
}

]
\strand[red] (0,0) to[out=0,in=180] ++(1,.6) to[out=0,in=180]

++(1,-.6);
\strand[blue] (0,1) to[out=0,in=180] ++(1,-.6)

to[out=0,in=180] ++(1,.6);
\end{knot}
\begin{knot}[

flip crossing=2,
background clip/.append style={

preaction={
fill=gray,
fill opacity=.5,

}
}

]
\strand[red] (2.5,0) to[out=0,in=180] ++(1,.6)

to[out=0,in=180] ++(1,-.6);
\strand[blue] (2.5,1) to[out=0,in=180] ++(1,-.6)

to[out=0,in=180] ++(1,.6);
\end{knot}
\end{tikzpicture}

19

	1 Pre-Introduction
	2 Introduction
	3 Examples
	4 Usage
	4.1 The knot Environment
	4.2 Keys
	4.3 Celtic Knots
	4.4 Other Styles

	5 Other Relevant Packages by the Same Author
	6 Troubleshooting
	6.1 Small Diagrams
	6.2 Strategies

