
The sympytex package∗

Tim Molteno (tim@physics.otago.ac.nz) and others

May 20, 2014

1 Introduction

The sympytex package allows you to embed the symbolic python package Sympy
(see http://www.sympy.org) and LATEX.

As a simple example, imagine in your document you are writing about how to
count license plates with three letters and three digits. With this package, you
can write something like this:

There are 26 choices for each letter, and 10 choices for

each digit, for a total of $26^3*10^3 = \sympy{(26**3 * 10**3)}$

license plates.

and it will produce

There are 26 choices for each letter, and 10 choices for each digit, for
a total of 17576000 license plates.

The great thing is, you don’t have to do the multiplication. Sympy does it for
you. This process mirrors one of the great aspects of LATEX: when writing a LATEX
document, you can concentrate on the logical structure of the document and trust
LATEX and its army of packages to deal with the presentation and typesetting. Sim-
ilarly, with sympytex, you can concentrate on the mathematical structure (“I need
the product of 263 and 103”) and let Sympy deal with the base-10 presentation of
the number.

A less trivial, and perhaps more useful example is plotting. You can include a
plot of the sine curve without manually producing a plot, saving an EPS or PDF
file, and doing the \includegraphics business with the correct filename yourself.
If you write this:

Here is a lovely graph of the sine curve:

\sympyplot{plot(sin(x), x, 0, 2*pi, show=False)}

in your LATEX file, it produces
Here is a lovely graph of the sine curve:

∗This document corresponds to sympytex v0.3, dated 2014/05/16.

1

http://www.sympy.org

10 5 0 5 10

10

5

0

5

10

Again, you need only worry about the logical/mathematical structure of your
document (“I need a plot of the sine curve over the interval [0, 2π] here”), while
sympytex takes care of the gritty details of producing the file and sourcing it into
your document.

But \sympyplot isn’t magic I just tried to convince you that sympytex makes
putting nice graphics into your document very easy; let me turn around and warn
you that using graphics well is not easy, and no LATEX package or Python script
will ever make it easy. What sympytex does is make it easy to to create graphics;
it doesn’t magically make your graphics good, appropriate, or useful.

2 Installation

The simplest way to “install” sympytex is to copy the files sympytex.sty and
sympytex.py into the same directory as your document. This will always work, as
LATEX and Python search the current directory for files. It is also convenient for
zipping up a directory to send to a colleague who is not yet enlightened enough
to be using sympytex.

Rather than make lots of copies of those files, you can keep them in one place
and update the TEXINPUTS and PYTHONPATH environment variables appro-
priately.

Perhaps the best solution is to put the files into a directory searched by TEX and
friends, and then edit the sympytex.sty file so that the .sympy files we generate
update Python’s path appropriately—look for “Python path” in sympytex.sty.
This is suitable for a system-wide installation, or if you are the kind of person who
keeps a texmf tree in your home directory.

2

3 Usage

Let’s begin with a rough description of how sympytex works. Naturally the very
first step is to put \usepackage{sympytex} in the preamble of your document.
When you use macros from this package and run LATEX on your file, along with
the usual zoo of auxiliary files, a .sympy file is written. This is a python source file
that uses the sympytex.py Python module from this package and when execute
the python code in that file, it will produce a .sout file. That file contains LATEX
code which, when you run LATEX on your source file again, will pull in all the
results of Sympy’s computation.

All you really need to know is that to typeset your document, you need to run
LATEX, then run Sympy, then run LATEX again.

Also keep in mind that everything you send to Sympy is done within one
Sympy session. This means you can define variables and reuse them throughout
your LATEX document; if you tell Sympy that foo is 12, then anytime afterwards
you can use foo in your Sympy code and Sympy will remember that it’s 12—just
like in a regular Sympy session.

Now that you know that, let’s describe what macros sympytex provides and
how to use them. If you are the sort of person who can’t be bothered to read
documentation until something goes wrong, you can also just look through the
example.tex file included with this package.1

3.1 Inline Sympy

\sympy{〈Sympy code〉}\sympy

takes whatever Sympy code you give it, runs Sympy’s latex function on it, and
puts the result into your document.

For example, if you do \sympy{matrix([[1, 2], [3,4]])^2}, then that
macro will get replaced by

\left(\begin{array}{rr}

7 & 10 \\

15 & 22

\end{array}\right)

in your document—that LATEX code is exactly exactly what you get from doing

latex(matrix([[1, 2], [3,4]])^2)

in Sympy.
Note that since LATEX will do macro expansion on whatever you give to \sympy,

you can mix LATEX variables and Sympy variables! If you have defined the Sympy
variable foo to be 12 (using, say, the sympyblock environment), then you can do
something like this:

1Then again, if you’re such a person, you’re probably not reading this, and are already fiddling
with example.tex. . .

3

The prime factorization of the current page number

times $2^{17} + 1$ is

$\sympy{factorint(\thepage*2**17+1)}$.

Here, I’ll do just that right now: the prime factorization of the current page
number times 217 + 1 is

{
3 : 1, 174763 : 1

}
.

The \sympy command doesn’t automatically use math mode for its output, so
be sure to use dollar signs or a displayed math environment as appropriate.

If you are doing modular arithmetic or string formatting and need a percent\percent

sign in a call to \sympy (or \sympyplot), you can use \percent. Using a bare
percent sign won’t work because LATEX will think you’re starting a comment and
get confused; prefixing the percent sign with a backslash won’t work because then
“\%” will be written to the .sympy file and Sympy will get confused. The \percent
macro makes everyone happy.

Note that using \percent inside the verbatim-like environments described in
subsection 3.3 isn’t necessary; a literal “%” inside such an environment will get
written, uh, verbatim to the .sympy file.

3.2 Graphics and plotting

\sympyplot[〈ltx opts〉][〈fmt〉]{〈graphics obj 〉, 〈keyword args〉}\sympyplot

plots the given Sympy graphics object and runs an \includegraphics command
to put it into your document. It does not have to actually be a plot of a function;
it can be any Sympy graphics object. The options are described in Table 1.

Option Description
〈ltx options〉 Any text here is passed directly into the op-

tional arguments (between the square brackets) of
an \includegraphics command. If not specified,
“width=.75\textwidth” will be used.

〈fmt〉 You can optionally specify a file extension here;
Sympy will then try to save the graphics object to
a file with extension fmt. If not specified, sympytex
will save to EPS and PDF files.

〈graphics obj 〉 A Sympy object on which you can call .save() with
a graphics filename.

〈keyword args〉 Any keyword arguments you put here will all be put
into the call to .save().

Table 1: Explanation of options for the \sympyplot command.

This setup allows you to control both the Sympy side of things, and the LATEX
side. For instance, the command

\sympyplot[angle=30, width=5cm]{plot(sin(x), 0, pi), axes=False,

chocolate=True}

4

will run the following command in Sympy:

sympy: plot(sin(x), 0, pi).save(filename=autogen, axes=False,

chocolate=True)

Then, in your LATEX file, the following command will be issued automatically:

\includegraphics[angle=30, width=5cm]{autogen}

You can specify a file format if you like. This must be the second optional
argument, so you must use empty brackets if you’re not passing anything to
\includegraphics:

\sympyplot[][png]{plot(sin(x), x, 0, pi)}

The filename is automatically generated, and unless you specify a format, both
EPS and PDF files will be generated. This allows you to freely switch between
using, say, a DVI viewer (many of which have support for automatic reloading,
source specials and make the writing process easier) and creating PDFs for posting
on the web or emailing to colleagues.

If you ask for, say, a PNG file, keep in mind that ordinary latex and DVI
files have no support for DVI files; sympytex detects this and will warn you that
it cannot find a suitable file if using latex. If you use pdflatex, there will be no
problems because PDF files can include PNG graphics.

When sympytex cannot find a graphics file, it inserts this into your document:

??

That’s supposed to resemble the image-not-found graphics used by web browsers
and use the traditional “??” that LATEX uses to indicate missing references.

You needn’t worry about the filenames; they are automatically generated and
will be put into the directory sympy-plots-for-filename.tex. You can safely
delete that directory anytime; if sympytex can’t find the files, it will warn you to
run Sympy to regenerate them.

WARNING! When you run Sympy on your .sympy file, all files in the
sympy-plots-for-filename.tex directory will be deleted! Do not put any files
into that directory that you do not want to get automatically deleted.

3.3 Verbatim-like environments

The sympytex package provides several environments for typesetting and executing
Sympy code.

5

Any text between \begin{sympyblock} and \end{sympyblock} will be type-sympyblock

set into your file, and also written into the .sympy file for execution. This means
you can do something like this:

\begin{sympyblock}

var(’x’)

f = sin(x) - 1

g = log(x)

h = diff(f(x) * g(x), x)

\end{sympyblock}

and then anytime later write in your source file

We have $h(2) = \sympy{h(2)}$, where h is the derivative of

the product of f and g.

and the \sympy call will get correctly replaced by log (x) cos (x) + (sin (x)− 1) /x.
You can use any Sympy or Python commands inside a sympyblock; all the com-
mands get sent directly to Sympy.

This environment is like sympyblock, but it does not typeset any of the code;sympysilent

it just writes it to the .sympy file. This is useful if you have to do some setup in
Sympy that is not interesting or relevant to the document you are writing.

This environment is the opposite of the one above: whatever you type will besympyverbatim

typeset, but not written into the .sympy file. This allows you to typeset psue-
docode, code that will fail, or take too much time to execute, or whatever.

Logically, we now need an environment that neither typesets nor executescomment

your Sympy code. . . but the verbatim package, which is always loaded when us-
ing sympytex, provides such an environment: comment. Another way to do this is
to put stuff between \iffalse and \fi.

There is one final bit to our verbatim-like environments: the indentation. The\sympytexindent

sympytex package defines a length \sympytexindent, which controls how much
the Sympy code is indented when typeset. You can change this length however
you like with \setlength: do \setlength{\sympytexindent}{6ex} or whatever.

4 Other notes

Here are some other notes on using sympytex.

Using Beamer The beamer package does not play nicely with verbatim-like
environments. To use code block environments in a beamer presentation, do:

\begin{frame}[fragile]

\begin{sympyblock}

6

sympy stuff

more stuff \end{sympyblock}

\end{frame}

For some reason, beamer inserts an extra line break at the end of the environment;
if you put the \end{sympyblock} on the same line as the last line of your code,
it works properly.

Thanks to Franco Saliola for reporting this.

5 Implementation

There are two pieces to this package: a LATEX style file, and a Python module.
They are mutually interdependent, so it makes sense to document them both here.

5.1 The style file

All macros and counters intended for use internal to this package begin with “ST@”.
Let’s begin by loading some packages. The key bits of sympyblock and friends

are stol—um, adapted from the verbatim package manual. So grab the verbatim

package.

1 \RequirePackage{verbatim}

Unsurprisingly, the \sympyplot command works poorly without graphics support.

2 \RequirePackage{graphicx}

The makecmds package gives us a \provideenvironment which we need, and we
use ifpdf and ifthen in \sympyplot so we know what kind of files to look for.

3 \RequirePackage{makecmds}

4 \RequirePackage{ifpdf}

5 \RequirePackage{ifthen}

Next set up the counters and the default indent.

6 \newcounter{ST@inline}

7 \newcounter{ST@plot}

8 \setcounter{ST@inline}{0}

9 \setcounter{ST@plot}{0}

10 \newlength{\sympytexindent}

11 \setlength{\sympytexindent}{5ex}

\ST@epsim By default, we don’t use ImageMagick to create EPS files when a non-default
format is specified.

12 \newcommand{\ST@epsim}{False}

The expansion of that macro gets put into a Python function call, so it works to
have it be one of the strings “True” or “False”.

Declare the imagemagick option and process it:

13 \DeclareOption{imagemagick}{\renewcommand{\ST@epsim}{True}}

14 \ProcessOptions\relax

7

The \relax is a little incantation suggested by the “LATEX 2ε for class and package
writers” manual, section 4.7.

It’s time to deal with files. Open the .sympy file:

15 \newwrite\ST@sf

16 \immediate\openout\ST@sf=\jobname.sympy

\ST@wsf We will write a lot of stuff to that file, so make a convenient abbreviation, then use
it to put the initial commands into the .sympy file. If you know what directory
sympytex.py will be kept in, delete the \iffalse and \fi lines in the generated
style file (don’t do it in the .dtx file) and change the directory appropriately. This
is useful if you have a texmf tree in your home directory or are installing sympytex
system-wide; then you don’t need to copy sympytex.py into the same directory
as your document.

17 \newcommand{\ST@wsf}[1]{\immediate\write\ST@sf{#1}}

18 \iffalse

19 %% To get .sympy files to automatically change the Python path to find

20 %% sympytex.py, delete the \iffalse and \fi lines surrounding this and

21 %% change the directory below to where sympytex.py can be found.

22 \ST@wsf{import sys}

23 \ST@wsf{sys.path.insert(0, ’directory with sympytex.py’)}

24 \fi

25 \ST@wsf{import sympy}

26 \ST@wsf{import sympytex}

27 \ST@wsf{sympytex.openout(’\jobname’)}

Pull in the .sout file if it exists, or do nothing if it doesn’t. I suppose we could do
this inside an AtBeginDocument but I don’t see any particular reason to do that.
It will work whenever we load it.

28 \InputIfFileExists{\jobname.sout}{}{}

Now let’s define the cool stuff.

\sympy This macro combines \ref, \label, and Sympy all at once. First, we use Sympy
to get a LATEX representation of whatever you give this function. The Sympy
script writes a \newlabel line into the .sout file, and we read the output using
the \ref command. Usually, \ref pulls in a section or theorem number, but it
will pull in arbitrary text just as well.

The first thing it does it write its argument into the .sympy file, along with
a counter so we can produce a unique label. We wrap a try/except around the
function call so that we can provide a more helpful error message in case something
goes wrong. (In particular, we can tell the user which line of the .tex file contains
the offending code.)

29 \newcommand{\sympy}[1]{%

30 \ST@wsf{try:}%

31 \ST@wsf{ sympytex.inline(\theST@inline, #1)}%

32 \ST@wsf{except:}%

33 \ST@wsf{ sympytex.goboom(\the\inputlineno)}%

8

Our use of \newlabel and \ref seems awfully clever until you load the hyperref

package, which gleefully tries to hyperlink the hell out of everything. This is great
until it hits one of our special \newlabels and gets deeply confused. Fortunately
the hyperref folks are willing to accomodate people like us, and give us a NoHyper

environment.

34 \begin{NoHyper}\ref{@sympylabel\theST@inline}\end{NoHyper}%

Now check to see if the label has already been defined. (The internal implementa-
tion of labels in LATEX involves defining a function “r@@labelname”.) If it hasn’t,
we set a flag so that we can tell the user to run Sympy on the .sympy file at the
end of the run. Finally, step the counter.

35 \@ifundefined{r@@sympylabel\theST@inline}{\gdef\ST@rerun{x}}{}%

36 \stepcounter{ST@inline}}

\sympyplain This macro combines \ref, \label, and Sympy all at once. First, we use Sympy
to get a plain representation of whatever you give this function. The Sympy script
writes a \newlabel line into the .sout file, and we read the output using the \ref
command. Usually, \ref pulls in a section or theorem number, but it will pull in
arbitrary text just as well.

The first thing it does it write its argument into the .sympy file, along with
a counter so we can produce a unique label. We wrap a try/except around the
function call so that we can provide a more helpful error message in case something
goes wrong. (In particular, we can tell the user which line of the .tex file contains
the offending code.)

37 \newcommand{\sympyplain}[1]{%

38 \ST@wsf{try:}%

39 \ST@wsf{ sympytex.inlineplain(\theST@inline, #1)}%

40 \ST@wsf{except:}%

41 \ST@wsf{ sympytex.goboom(\the\inputlineno)}%

Our use of \newlabel and \ref seems awfully clever until you load the hyperref

package, which gleefully tries to hyperlink the hell out of everything. This is great
until it hits one of our special \newlabels and gets deeply confused. Fortunately
the hyperref folks are willing to accomodate people like us, and give us a NoHyper

environment.

42 \begin{NoHyper}\ref{@sympylabel\theST@inline}\end{NoHyper}%

Now check to see if the label has already been defined. (The internal implementa-
tion of labels in LATEX involves defining a function “r@@labelname”.) If it hasn’t,
we set a flag so that we can tell the user to run Sympy on the .sympy file at the
end of the run. Finally, step the counter.

43 \@ifundefined{r@@sympylabel\theST@inline}{\gdef\ST@rerun{x}}{}%

44 \stepcounter{ST@inline}}

The user might load the hyperref package after this one (indeed, the hyperref
documentation insists that it be loaded last) or not at all—so when we hit the
beginning of the document, provide a dummy NoHyper environment if one hasn’t
been defined by the hyperref package.

45 \AtBeginDocument{\provideenvironment{NoHyper}{}{}}

9

\percent A macro that inserts a percent sign. This is more-or-less stolen from the Docstrip
manual; there they change the catcode inside a group and use gdef, but here we
try to be more LATEXy and use \newcommand.

46 \catcode‘\%=12

47 \newcommand{\percent}{%}

48 \catcode‘\%=14

\ST@plotdir A little abbreviation for the plot directory. We don’t use \graphicspath because
it’s apparently slow—also, since we know right where our plots are going, no need
to have LATEX looking for them.

49 \newcommand{\ST@plotdir}{sympy-plots-for-\jobname.tex}

\sympyplot This function is similar to \sympy. The neat thing that we take advantage of is that
commas aren’t special for arguments to LATEX commands, so it’s easy to capture
a bunch of keyword arguments that get passed right into a Python function.

This macro has two optional arguments, which can’t be defined using LATEX’s
\newcommand; we use Scott Pakin’s brilliant newcommand package to create this
macro; the options I fed to his script were similar to this:

MACRO sympyplot OPT[#1={width}] OPT[#2={notprovided}] #3

Observe that we are using a Python script to write LATEX code which writes Python
code which writes LATEX code. Crazy!

Here’s the wrapper command which does whatever magic we need to get two
optional arguments.

50 \newcommand{\sympyplot}[1][width=.75\textwidth]{%

51 \@ifnextchar[{\ST@sympyplot[#1]}{\ST@sympyplot[#1][notprovided]}%]

52 }

That percent sign followed by a square bracket seems necessary; I have no idea
why.

The first optional argument #1 will get shoved right into the optional argument
for \includegraphics, so the user has easy control over the LATEX aspects of the
plotting. We define a default size of 3/4 the textwidth, which seems reasonable.
(Perhaps a future version of sympytex will allow the user to specify in the package
options a set of default options to be used throughout.) The second optional
argument #2 is the file format and allows us to tell what files to look for. It
defaults to “notprovided”, which tells the Python module to create EPS and PDF
files. Everything in #3 gets put into the Python function call, so the user can put
in keyword arguments there which get interpreted correctly by Python.

\ST@sympyplot Let’s see the real code here. We write a couple lines to the .sympy file, including
a counter, input line number, and all of the mandatory argument; all this is
wrapped in another try/except. Note that the \write gobbles up line endings, so
the sympyplot bits below get written to the .sympy file as one line.

53 \def\ST@sympyplot[#1][#2]#3{%

54 \ST@wsf{try:}%

55 \ST@wsf{ sympytex.initplot(’\jobname’)}%

10

http://www.tex.ac.uk/cgi-bin/texfaq2html?label=graphicspath
http://tug.ctan.org/tex-archive/support/newcommand/

DVI or PDF?

Format provided?

STig EPS

no

IM option set?

Warn that DVI +
PNG = bad

no

STig EPS

yes

yes

DVI

Format provided?

STig PDF

no

STig #2

yes

PDF

Figure 1: The logic tree that \sympyplot uses to decide whether to run
\includegraphics or to yell at the user. “Format” is the #2 argument to
\sympyplot, “STig ext” means a call to \ST@inclgrfx with “ext” as the sec-
ond argument, and “IM” is Imagemagick.

56 \ST@wsf{ sympytex.plot(\theST@plot, #3, format=’#2’, epsmagick=\ST@epsim)}%

57 \ST@wsf{except:}%

58 \ST@wsf{ sympytex.goboom(\the\inputlineno)}%

Now we include the appropriate graphics file. Because the user might be producing
DVI or PDF files, and have supplied a file format or not, and so on, the logic we
follow is a bit complicated. Figure 1 shows what we do; for completeness, we show
what \ST@inclgrfx does in Figure 2. This entire complicated business is intended
to avoid doing an \includegraphics command on a file that doesn’t exist, and
to issue warnings appropriate to the situation.

If we are creating a PDF, we check to see if the user asked for a different
format, and use that if necessary:

59 \ifpdf

60 \ifthenelse{\equal{#2}{notprovided}}%

61 {\ST@inclgrfx{#1}{pdf}}%

62 {\ST@inclgrfx{#1}{#2}}%

Otherwise, we are creating a DVI file, which only supports EPS. If the user pro-
vided a format anyway, don’t include the file (since it won’t work) and warn the
user about this. (Unless the file doesn’t exist, in which case we do the same thing
that \ST@inclgrfx does.)

63 \else

64 \ifthenelse{\equal{#2}{notprovided}}%

65 {\ST@inclgrfx{#1}{eps}}%

If a format is provided, we check to see if we’re using the imagemagick option. If
so, try to include an EPS file anyway.

66 {\ifthenelse{\equal{#2}{eps}}

67 {\ST@inclgrfx{#1}{eps}}%

11

Does EXT file exist?

Warn user to
rerun Sympy

no

Use includegraphics

yes

Figure 2: The logic used by the \ST@inclgrfx command.

68 {\ifthenelse{\equal{\ST@epsim}{True}}

69 {\ST@inclgrfx{#1}{eps}}%

If we’re not using the imagemagick option, we’re going to issue some sort of warn-
ing, depending on whether the file exists yet or not.

70 {\IfFileExists{\ST@plotdir/plot-\theST@plot.#2}%

71 {\framebox[2cm]{\rule[-1cm]{0cm}{2cm}\textbf{??}}%

72 \PackageWarning{sympytex}{Graphics file

73 \ST@plotdir/plot-\theST@plot.#2\space on page \thepage\space

74 cannot be used with DVI output. Use pdflatex or create an EPS

75 file. Plot command is}}%

76 {\framebox[2cm]{\rule[-1cm]{0cm}{2cm}\textbf{??}}%

77 \PackageWarning{sympytex}{Graphics file

78 \ST@plotdir/plot-\theST@plot.#2\space on page \thepage\space

79 does not exist}%

80 \gdef\ST@rerun{x}}}}}%

81 \fi

Finally, step the counter and we’re done.

82 \stepcounter{ST@plot}}

\ST@inclgrfx This command includes the requested graphics file (#2 is the extension) with the
requested options (#1) if the file exists. Note that it just needs to know the
extension, since we use a counter for the filename.

83 \newcommand{\ST@inclgrfx}[2]{%

84 \IfFileExists{\ST@plotdir/plot-\theST@plot.#2}%

85 {\includegraphics[#1]{\ST@plotdir/plot-\theST@plot.#2}}%

If the file doesn’t exist, we insert a little box to indicate it wasn’t found, issue a
warning that we didn’t find a graphics file, then set a flag that, at the end of the
run, tells the user to run Sympy again.

86 {\framebox[2cm]{\rule[-1cm]{0cm}{2cm}\textbf{??}}%

87 \PackageWarning{sympytex}{Graphics file

88 \ST@plotdir/plot-\theST@plot.#2\space on page \thepage\space does not

89 exist}%

90 \gdef\ST@rerun{x}}}

Figure 2 makes this a bit clearer.

\ST@beginsfbl This is “begin .sympy file block”, an internal-use abbreviation that sets things up
when we start writing a chunk of Sympy code to the .sympy file. It begins with

12

some TEX magic that fixes spacing, then puts the start of a try/except block in the
.sympy file—this not only allows the user to indent code without Sympy/Python
complaining about indentation, but lets us tell the user where things went wrong.
The last bit is some magic from the verbatim package manual that makes LATEX
respect line breaks.

91 \newcommand{\ST@beginsfbl}{%

92 \@bsphack%

93 \ST@wsf{sympytex.blockbegin()}%

94 \ST@wsf{try:}%

95 \let\do\@makeother\dospecials\catcode‘\^^M\active}

\ST@endsfbl The companion to \ST@beginsfbl.

96 \newcommand{\ST@endsfbl}{%

97 \ST@wsf{except:}%

98 \ST@wsf{ sympytex.goboom(\the\inputlineno)}%

99 \ST@wsf{sympytex.blockend()}}

Now let’s define the “verbatim-like” environments. There are four possibilities,
corresponding to two independent choices of typesetting the code or not, and
writing to the .sympy file or not.

sympyblock This environment does both: it typesets your code and puts it into the .sympy

file for execution by Sympy.

100 \newenvironment{sympyblock}{\ST@beginsfbl%

The space between \ST@wsf{ and \the is crucial! It, along with the “try:”, is
what allows the user to indent code if they like. This line sends stuff to the .sympy
file.

101 \def\verbatim@processline{\ST@wsf{ \the\verbatim@line}%

Next, we typeset your code and start the verbatim environment.

102 \hspace{\sympytexindent}\the\verbatim@line\par}%

103 \verbatim}%

At the end of the environment, we put a chunk into the .sympy file and stop the
verbatim environment.

104 {\ST@endsfbl\endverbatim}

sympysilent This is from the verbatim package manual. It’s just like the above, except we
don’t typeset anything.

105 \newenvironment{sympysilent}{\ST@beginsfbl%

106 \def\verbatim@processline{\ST@wsf{ \the\verbatim@line}}%

107 \verbatim@start}%

108 {\ST@endsfbl\@esphack}

sympyverbatim The opposite of sympysilent. This is exactly the same as the verbatim environ-
ment, except that we include some indentation to be consistent with other typeset
Sympy code.

109 \newenvironment{sympyverbatim}{%

13

110 \def\verbatim@processline{\hspace{\sympytexindent}\the\verbatim@line\par}%

111 \verbatim}%

112 {\endverbatim}

Logically, we now need an environment which neither typesets nor writes code
to the .sympy file. The verbatim package’s comment environment does that.

Now we deal with some end-of-file cleanup.
We tell the Sympy script to write some information to the .sout file, then

check to see if ST@rerun ever got defined. If not, all the inline formulas and plots
worked, so do nothing.

113 \AtEndDocument{\ST@wsf{sympytex.endofdoc()}%

114 \@ifundefined{ST@rerun}{}%

Otherwise, we issue a warning to tell the user to run Sympy on the .sympy file.
Part of the reason we do this is that, by using \ref to pull in the inlines, LATEX will
complain about undefined references if you haven’t run the Sympy script—and for
many LATEX users, myself included, the warning “there were undefined references”
is a signal to run LATEX again. But to fix these particular undefined references,
you need to run Sympy. We also suppressed file-not-found errors for graphics files,
and need to tell the user what to do about that.

At any rate, we tell the user to run Sympy if it’s necessary.

115 {\PackageWarningNoLine{sympytex}{There were undefined Sympy formulas

116 and/or plots}%

117 \PackageWarningNoLine{sympytex}{Run python on \jobname.sympy, and then run

118 LaTeX on \jobname.tex again}}}

5.2 The Python module

The style file writes things to the .sympy file and reads them from the .sout file.
The Python module provides functions that help produce the .sout file from the
.sympy file.

A note on Python and Docstrip There is one tiny potential source of confu-
sion when documenting Python code with Docstrip: the percent sign. If you have
a long line of Python code which includes a percent sign for string formatting and
you break the line with a backslash and begin the next line with a percent sign,
that line will not be written to the output file. This is only a problem if you begin
the line with a percent sign; there are no troubles otherwise.

On to the code:
The sympytex.py file is intended to be used as a module and doesn’t do any-

thing useful when called directly, so if someone does that, warn them. We do
this right away so that we print this and exit before trying to import any Sympy
modules; that way, this error message gets printed whether you run the script with
Sympy or with Python.

119 import sys

14

120 if __name__ == "__main__":

121 print("""This file is part of the SympyTeX package.

122 It is not meant to be called directly.

123

124 This file will be used by Sympy scripts generated from a LaTeX document

125 using the sympytex package. Keep it somewhere where Sympy and Python can

126 find it and it will automatically be imported.""")

127 sys.exit()

We start with some imports and definitions of our global variables. This is a
relatively specialized use of Sympy, so using global variables isn’t a bad idea.
Plus I think when we import this module, they will all stay inside the sympytex

namespace anyway.

128 import sympy

129 from sympy.plotting.plot import plot, Plot

130 import os

131 import os.path

132 import hashlib

133 import traceback

134 import subprocess

135 import shutil

136 initplot_done = False

137 dirname = None

138 filename = ""

ttexprint This function gets around the insertion of begin/end math symbols that sympy
puts into its latex output

139 from string import strip

140 def ttexprint(exp):

141 return strip(sympy.latex(exp, mode=’inline’),’$’)

progress This function justs prints stuff. It allows us to not print a linebreak, so you can
get “start...” (little time spent processing) “end” on one line.

142 def progress(t,linebreak=True):

143 if linebreak:

144 print(t)

145 else:

146 sys.stdout.write(t)

openout This function opens a .sout.tmp file and writes all our output to that. Then,
when we’re done, we move that to .sout. The “autogenerated” line is basically
the same as the lines that get put at the top of preparsed sympy files; we are
automatically generating a file with sympy, so it seems reasonable to add it.

147 def openout(f):

148 global filename

149 filename = f

150 global _file_

151 _file_ = open(f + ’.sout.tmp’, ’w’)

152 s = ’% This file was *autogenerated* from the file ’ + \

15

153 os.path.splitext(filename)[0] + ’.sympy.\n’

154 _file_.write(s)

155 progress(’Processing Sympy code for %s.tex...’ % filename)

initplot We only want to create the plots directory if the user actually plots something.
This function creates the directory and sets the initplot_done flag after doing
so. We make a directory based on the LATEX file being processed so that if there
are multiple .tex files in a directory, we don’t overwrite plots from another file.

156 def initplot(f):

157 global initplot_done

158 if not initplot_done:

159 progress(’Initializing plots directory’)

160 global dirname

We hard-code the .tex extension, which is fine in the overwhelming majority of
cases, although it does cause minor confusion when building the documentation. If
it turns out lots of people use, say, a ltx extension or whatever, I think we could
find out the correct extension, but it would involve a lot of irritating mucking
around.

161 dirname = ’sympy-plots-for-’ + f + ’.tex’

162 if os.path.isdir(dirname):

163 shutil.rmtree(dirname)

164 os.mkdir(dirname)

165 initplot_done = True

inline This function works with \sympy from the style file to put Sympy output into your
LATEX file. Usually, when you use \label, it writes a line such as

\newlabel{labelname}{{section number}{page number}}

to the .aux file. When you use the hyperref package, there are more fields in the
second argument, but the first two are the same. The \ref command just pulls
in what’s in the first field, so we can hijack this mechanism for our own nefarious
purposes. The function writes a \newlabel line with a label made from a counter
and the text from running Sympy on s.

We print out the line number so if something goes wrong, the user can more
easily track down the offending \sympy command in the source file.

That’s a lot of explanation for a very short function:

166 def inline(counter, s):

167 progress(’Inline formula %s’ % counter)

168 _file_.write(’\\newlabel{@sympylabel’ + str(counter) + ’}{{’ + \

169 ttexprint(s) + ’}{}{}{}{}}\n’)

We are using five fields, just like hyperref does, because that works whether
or not hyperref is loaded. Using two fields, as in plain LATEX, doesn’t work if
hyperref is loaded.

inlineplain This function works with \sympy from the style file to put Sympy output into your
LATEX file. This does not format the output!

16

We print out the line number so if something goes wrong, the user can more
easily track down the offending \sympy command in the source file.

That’s a lot of explanation for a very short function:

170 def inlineplain(counter, s):

171 progress(’Inline Plain formula %s’ % counter)

172 _file_.write(’\\newlabel{@sympylabel’ + str(counter) + ’}{{’ + \

173 str(s) + ’}{}{}{}{}}\n’)

We are using five fields, just like hyperref does, because that works whether
or not hyperref is loaded. Using two fields, as in plain LATEX, doesn’t work if
hyperref is loaded.

blockbegin

blockend

This function and its companion used to write stuff to the .sout file, but now
they just update the user on our progress evaluating a code block.

174 def blockbegin():

175 progress(’Code block begin...’, False)

176 def blockend():

177 progress(’end’)

plot I hope it’s obvious that this function does plotting. As mentioned in the
\sympyplot code, we’re taking advantage of two things: first, that LATEX doesn’t
treat commas and spaces in macro arguments specially, and second, that Python
(and Sympy plotting functions) has nice support for keyword arguments. The #3

argument to \sympyplot becomes p and **kwargs below.

178 def plot(counter, p, format=’notprovided’, epsmagick=False, **kwargs):

179 global dirname

180 progress(’Plot %s’ % counter)

If the user says nothing about file formats, we default to producing PDF and
EPS. This allows the user to transparently switch between using a DVI previewer
(which usually automatically updates when the DVI changes, and has support for
source specials, which makes the writing process easier) and making PDFs.

181 if format == ’notprovided’:

182 formats = [’eps’, ’pdf’]

183 else:

184 formats = [format]

185 for fmt in formats:

186 plotfilename = os.path.join(dirname, ’plot-%s.%s’ % (counter, fmt))

187 print(’ plotting %s with args %s’ % (plotfilename, kwargs))

188 if (isinstance(p, Plot)):

189 p.save(plotfilename)

190 else:

191 p.savefig(filename=plotfilename, **kwargs)

If the user provides a format and specifies the imagemagick option, we try to
convert the newly-created file into EPS format.

192 if format != ’notprovided’ and epsmagick is True:

193 print(’Calling Imagemagick to convert plot-%s.%s to EPS’ % \

194 (counter, format))

195 toeps(counter, format)

17

toeps This function calls the Imagmagick utility convert to, well, convert something
into EPS format. This gets called when the user has requested the “imagemagick”
option to the sympytex style file and is making a graphic file with a nondefault
extension.

196 def toeps(counter, ext):

197 global dirname

198 subprocess.check_call([’convert’,\

199 ’%s/plot-%s.%s’ % (dirname, counter, ext), \

200 ’%s/plot-%s.eps’ % (dirname, counter)])

We are blindly assuming that the convert command exists and will do the con-
version for us; the check_call function raises an exception which, since all these
calls get wrapped in try/excepts in the .sympy file, should result in a reasonable
error message if something strange happens.

goboom When a chunk of Sympy code blows up, this function bears the bad news to the
user. Normally in Python the traceback is good enough for this, but in this case,
we start with a .sympy file (which is autogenerated) which autogenerates a .py

file—and the tracebacks the user sees refer to that file, whose line numbers are
basically useless. We want to tell them where in the LATEX file things went bad,
so we do that, give them the traceback, and exit after removing the .sout.tmp

file.

201 def goboom(line):

202 global filename

203 print(’\n**** Error in Sympy code on line %s of %s.tex! Traceback\

204 follows.’ % (line, filename))

205 traceback.print_exc()

206 print(’\n**** Running Sympy on %s.sympy failed! Fix %s.tex and try\

207 again.’ % (filename, filename))

208 os.remove(filename + ’.sout.tmp’)

209 sys.exit(1)

endofdoc When we’re done processing, we have a couple little cleanup tasks. We want to
put the MD5 sm of the .sympy file that produced the .sout file we’re about to
write into the .sout file, so that external programs that build LATEX documents
can tell if they need to call Sympy to update the .sout file. But there is a
problem: we write line numbers to the .sympy file so that we can provide useful
error messages—but that means that adding, say, a line break to your source file
will change the MD5 sum, and your program will think it needs to rerun Sympy
even though none of the actual calls to Sympy have changed.

How do we include line numbers for our error messages but still allow a program
to discover a “genuine” change to the .sympy file?

The answer is to only find the MD5 sum of part of the .sympy file. By design,
the source file line numbers only appear in calls to goboom, so we will strip those
lines out. Basically we are doing

grep -v ’^ sympytex.goboom’ filename.sympy | md5sum

18

(In fact, what we do below produces exactly the same sum.)

210 def endofdoc():

211 global filename

212 sympyf = open(filename + ’.sympy’, ’r’)

213 m = hashlib.md5()

214 for line in sympyf:

215 if line[0:15] != ’ sympytex.goboom’:

216 m.update(line)

217 s = ’%’ + m.hexdigest() + ’% md5sum of .sympy file (minus "goboom" \

218 lines) that produced this\n’

219 _file_.write(s)

Now, we do issue warnings to run Sympy on the .sympy file and an external pro-
gram might look for those to detect the need to rerun Sympy, but those warnings
do not quite capture all situations. (If you’ve already produced the .sout file
and change a \sympy call, no warning will be issued since all the \refs find a
\newlabel.) Anyway, I think it’s easier to grab an MD5 sum out of the end
of the file than parse the output from running latex on your file. (The regular
expression ^%[0-9a-f]{32}% will find the MD5 sum.)

Now we are done with the .sout file. Close it, rename it, and tell the user
we’re done.

220 _file_.close()

221 os.rename(filename + ’.sout.tmp’, filename + ’.sout’)

222 progress(’Sympy processing complete. Run LaTeX on %s.tex again.’ %\

223 filename)

6 Credits and acknowledgements

This is competely based around the excellent sagetex package for embedding sage
into LaTeX. All credit to Dan Drake and others.

7 Copying and licenses

The source code of the sympytex package may be redistributed and/or modified
under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 2 of the License, or (at your option) any later
version. To view a copy of this license, see http://www.gnu.org/licenses/ or
send a letter to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.

The documentation of the sympytex package is licensed under the Creative
Commons Attribution-Noncommercial-Share Alike 3.0 License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

19

http://www.gnu.org/licenses/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Change History

v1.0

General: Initial version 1

v1.3
\sympyplot: Iron out warnings,

cool TikZ flowchart 10

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\% 46, 48
\@bsphack 92
\@esphack 108
\@ifnextchar 51
\@ifundefined 35, 43, 114
\@makeother 95
\\ 168, 172
\^ 95

\ . . . 152, 168, 172,
193, 198, 199,
203, 206, 217, 222

A
\active 95
\AtBeginDocument . . 45
\AtEndDocument 113

B
\begin 34, 42
\blockbegin 174
\blockend 174

C
\catcode 46, 48, 95

D
\DeclareOption 13
\def . . . 53, 101, 106, 110
\do 95
\dospecials 95

E
\else 63

\end 34, 42
\endofdoc 210
\endverbatim . . 104, 112
environments:

sympyblock 100
sympysilent 105
sympyverbatim . . 109

\equal . . . 60, 64, 66, 68

F
\fi 20, 24, 81
\framebox . . . 71, 76, 86

G
\gdef 35, 43, 80, 90
\goboom 201

H
\hspace 102, 110

I
\iffalse 18, 20
\IfFileExists . . . 70, 84
\ifpdf 59
\ifthenelse 60, 64, 66, 68
\immediate 16, 17
\includegraphics . . 85
\initplot 156
\inline 166
\inlineplain 170
\InputIfFileExists . 28
\inputlineno

. . . . 33, 41, 58, 98

J
\jobname 16, 27,

28, 49, 55, 117, 118

L
\let 95

N
\n 153, 169,

173, 203, 206, 218
\newcounter 6, 7
\newlength 10
\newwrite 15

O
\openout 16, 147

P
\PackageWarning . . .

. 72, 77, 87
\PackageWarningNoLine

. 115, 117
\par 102, 110
\percent 46
\plot 178
\ProcessOptions . . . 14
\progress 142
\provideenvironment 45

R
\ref 34, 42
\relax 14
\renewcommand 13
\RequirePackage . . . 1–5
\rule 71, 76, 86

S
\setcounter 8, 9
\setlength 11
\space 73, 78, 88

20

\ST@beginsfbl
. 91, 100, 105

\ST@endsfbl 96, 104, 108

\ST@epsim 12, 13, 56, 68

\ST@inclgrfx . . . 61,
62, 65, 67, 69, 83

\ST@plotdir . . 49, 70,
73, 78, 84, 85, 88

\ST@rerun 35, 43, 80, 90

\ST@sf 15–17

\ST@sympyplot . . . 51, 53

\ST@wsf 17, 30–
33, 38–41, 54–
58, 93, 94, 97–
99, 101, 106, 113

\stepcounter . 36, 44, 82

\sympy 29

sympyblock (environ-
ment) 100

\sympyplain 37

\sympyplot 50

sympysilent (environ-
ment) 105

\sympytexindent . . .
. . 10, 11, 102, 110

sympyverbatim (envi-
ronment) . . . 109

T

\textbf 71, 76, 86

\textwidth 50

\thepage 73, 78, 88

\theST@inline . . 31,
34, 35, 39, 42, 43

\theST@plot . . 56, 70,
73, 78, 84, 85, 88

\toeps 196
\ttexprint 139

V
\verbatim 103, 111
\verbatim@line

. 101, 102, 106, 110
\verbatim@processline

. . . . 101, 106, 110
\verbatim@start . . . 107

W
\write 17

21

	Introduction
	Installation
	Usage
	Inline Sympy
	Graphics and plotting
	Verbatim-like environments

	Other notes
	Implementation
	The style file
	The Python module

	Credits and acknowledgements
	Copying and licenses

