
MAKECIRCMAKECIRC

A METAPOST library for electrical circuit
diagrams drawing

Gustavo S. Bustamante Argañaraz∗

January 9, 2004

Contents

1 Introduction 1

2 Configuration 2

3 Usage 3

3.1 Begin . 4

3.2 Symbols . 4

3.2.1 Positioning . 11

3.2.2 Wiring . 15

3.3 Adding of text to the circuits . 19

4 Compilation 20

1 Introduction

MAKECIRC is a METAPOST library that contains diverse symbols (the ma-
jority of wich are electrician) for the use in circuit diagrams. MAKECIRC
tries to offer a high quality tool, with a simple syntax.

Although MAKECIRC uses all power of METAPOST, it doesn’t require
the learning of this language to be used. However, it’s knowledge makes
easier the library implementation.

∗Thanks to José Luis Díaz for the support given, answering my questions about META-
POST, and providing the latex.mp library, which is used in this library. Also thanks to
Sebastián Pablo Sánchez for the help in this english version manual.

1

2 2 Configuration

MAKECIRC is completely integrated with LATEX documents and with
other METAPOST drawings/graphics. Its output is a POSTSCRIPT file.

2 Configuration

MAKECIRC provides three parameters that can be configured externally:

• linewd specifies line thickness;

• lbsep specifies the separation between the label and the symbol;

• dimen specifies the symbols size; and

• labeling which can take two values, rotatelabel so that symbol’s
labels rotate together with them, or norotatelabel (default) so that
labels stay in normal position.

The first three parameters should be scaled to modify their default va-
lue, that is, if you want line thickness to be the double of the current value,
you should write:

linewd:=2linewd;

In the same way you should do with the other two:

lbsep:=2lbsep; dimen:=2dimen;

where dimen is a parameter (characteristic dimension) that varies accord-
ing to which symbol it refers to, just as it is shown in table 1.

The labeling parameter, as was described, can take two values, which
should be changed specifying labeling:=value , for example:

labeling:=rotatelabel;

The four configuration parameters can be applied whether to determin-
ed elements, or to all the circuit elements. In this case you should place
them before beginning the symbols insertion.

Once linewd value was scaled a certain factor , to return it to its nor-
mal value you should write

linewd:=linewd/factor

because the linewd value is factor times linewd , therefore if you divide
it by the same factor, the result will be linewd .

For example:

3

Table 1: Characteristic dimensions of symbols.
Element Characteristic dimension
Resistor rstlth
Capacitor platsep
Inductor coil
Transformer
Source ssize
Battery
Motor
Generator
Measurement instrument
Lamp
Diode diodeht
Transistor bjtlth
Impedance implth
Rheostat rheolth
Ground gndlth
Junction junctiondiam
Switch ssep

element1; element2;
labeling:=rotatelabel;
element3; % in this element the labels are rotated %
linewd:=2linewd;
element4; % in this element also, and in addition the
% line thickness is increased the double.
labeling:=norotatelabel; linewd:=linewd/2;
% here they came back to the default value %
element5; element6;

If you want to increase proportionally the size of all the circuit elements
with the line thickness and labels size, you should use as last instruction

scalecirc factor;

with which the circuit size is scaled an amount factor .

3 Usage

The methodology that MAKECIRC suggests for the creation of circuit dia-
grams is the following one:

a) to place the symbols in the wanted position; and
b) to connect them using their pins.

4 3 Usage

I think this method is more convenient, but you can implement any
other that results simpler and more effective for you.

3.1 Begin

To begin, you should specify the library input in the following way

input makecirc;

Then, you should call initlatex function. This macro writes a LATEX
header in an auxiliary file.1 By calling this function, you can specify addi-
tional packages and macros definitions to use with LATEX.

initlatex("\usepackage{package}" &
"\usepackage{other_package}" &
"\newcommand{command}{definition}");

The next step is to begin the circuit diagrams using the instruction
beginfig(n) , being n the figure number. When you conclude the circuit,
write endfig . If you want to make another circuit, you should write again:

beginfig(k); % k is another number different of n %
% ... here goes the circuit ... %
endfig;

When you conclude all the circuits, write end .

It is important to mention that all the statements used in METAPOST

—and therefore in MAKECIRC— end with semicolon (;).

3.2 Symbols

In this section I will describe the syntax to compose the symbols in MAKE-
CIRC.

The majority of the most common symbols are composed in the following
way:

element. α(z,type,angle,name,value);

1You don’t need to call this macro if you use TEX as typesetting engine.

3.2 Symbols 5

where: α is an alphabetical character (a, b, c, A, B, C, ab, cd, etc.) that will
be used after as part of the element pins;
z=(x,y) are the insertion point coordinates of the element;
type is an element subcategory that will depend on which type of
element is being inserted;
angle is the angle in degrees that the element will be rotated
(counter-clockwise) starting from its initial position;
name is the name or characteristic letter of the element (L, R, etc.);
and
value is the numeric value of the element.

However, there are other elements that contain more or less parameters
that will be described along this section.

It should be added that the parameters name and value should be writ-
ten between inverted commas ("). In addition LATEX commands can be used
in these parameters.

The name parameter is defined in mathematical mode, that is, in LATEX
language between $ and $. Therefore all mathematical functions and LATEX
commands are valid. This means, you can write "L_1^2" and the result
will be L2

1, "v=\hat{V}\sin\omega t" and the result will be v = V̂ sinωt,
etc. This is due in most cases the name of a symbol is a constant or mathe-
matical variable (L, R, Z, v, i, etc.).

In contrast, the value parameter is defined in text mode, as is required
in most cases. ("10 V" =⇒ 10 V, "50 pF" =⇒ 50 pF, etc.). An exception
to this case —that require to be written in mathematical mode— is the
electrical resistance unit (ohm Ω). To make easier the use of this package
for those with no knowledge of LATEX, MAKECIRC includes the \ohm and
\kohm commands. Therefore, if you write "10\ohm" , the result will be
10 Ω, "42\kohm" and the result will be 42 kΩ. Note that there are no spaces
between text and commands.

Also, MAKECIRC includes another command, \modarg , to write com-
plex numbers in the notation module-argument.2 For instance if you write
"\modarg{220}{30}" the result will be 220/30◦.

It is important to mention that if labels’ text contains errors, LATEX will
be unable to complete its compilation. This will make impossible to run
METAPOST on the source file —even if the errors are corrected— until you
delete the auxiliar file (which has .mpt extension).

Next will described and illustrated all the available symbols in MAKE-
CIRC. It will be also indicated which is the pin wich is positioned on the z
insertion point of the element.

Element: Inductor

Syntax: inductor. α(z,type,angle,name,value)

Available types: Up|Down

2Thanks to Javier Bezos for this.

6 3 Usage

Pins: L. α.l|L. α.r

Positioning pin in z : L. α.l

Up Down
L.α.l L.α.r L.α.l L.α.r

Element: Capacitor

Syntax: capacitor. α(z,type,angle,name,value)

Available types: normal|variable|electrolytic|variant

Pins: C. α.l|C. α.r

Positioning pin in z : C. α.l

normal variable

electrolytic variant

C.α.l C.α.r C.α.l C.α.r

C.α.l C.α.r C.α.l C.α.r

Element: Resistor

Syntax: resistor. α(z,type,angle,name,value)

Available types: normal|variable

Pins: R. α.l|R. α.r

Positioning pin in z : R. α.l

normal variable
R.α.l R.α.r R.α.l R.α.r

Element: Source

Syntax: source. α(z,type,angle,name,value)

Available types: AC|DC|V|I

Pins: S. α.n|S. α.p

Positioning pin in z : S. α.n

3.2 Symbols 7

AC DC

V I

S.α.n S.α.p S.α.n S.α.p

S.α.n S.α.p S.α.n S.α.p

Element: Switch

Syntax: switch. α(z,type,angle,name,value)

Available types: NO|NC

Pins: st. α.l|st. α.r

Positioning pin in z : st. α.l

NO NC

st.α.l st.α.r st.α.l st.α.r

Element: Motor

Syntax: motor. α(z,angle,name,value)

Pins: M.α.D|M. α.B

Positioning pin in z : M.α.D

MM.α.D M.α.B

Element: Generator

Syntax: generator. α(z,angle,name,value)

Pins: G.α.D|G. α.B

Positioning pin in z : G.α.D

GG.α.D G.α.B

Element: Impedance

Syntax: impedance. α(z,angle,name,value)

Pins: Z. α.l|Z. α.r

8 3 Usage

Positioning pin in z : Z. α.l

Z.α.l Z.α.r

Element: Lamp

Syntax: lamp. α(z,angle,name,value)

Pins: La. α.l|La. α.r

Positioning pin in z : La. α.l

La.α.l La.α.r

Element: Current

Syntax: current. α(z,angle,name,value)

Pins: i. α.s|i. α.d

Positioning pin in z : i. α.s

i.α.s i.α.d

Element: Battery

Syntax: battery. α(z,angle,name,value)

Pins: B. α.n|B. α.p

Positioning pin in z : B. α.n

B.α.n B.α.p

Element: Transformer

Syntax: transformer. α(z,type,angle)

Available types: normal|midpoint

Pins: tf. α.pi|tf. α.ps|tf. α.si|tf. α.ss|tf. α.m

Positioning pin in z : tf. α.pi

3.2 Symbols 9

tf.α.ps

tf.α.pi

tf.α.ss

tf.α.si

tf.α.ps

tf.α.pi

tf.α.ss

tf.α.si

tf.α.m

tf.α.ps

tf.α.pi

tf.α.ss

tf.α.si

tf.α.ps

tf.α.pi

tf.α.ss

tf.α.si

normal mid

Fe
auto

Element: Transistor

Syntax: transistor. α(z,type,angle)

Available types: pnp|npn|cpnp|cnpn

Pins: T. α.B|T. α.C|T. α.E

Positioning pin in z : T. α.B

T.α.B T.α.B

T.α.B T.α.B

T.α.C T.α.C

T.α.C T.α.C

T.α.E T.α.E

T.α.E T.α.E

pnp npn

cpnp cnpn

Element: Ground

Syntax: ground. α(z,type,angle)

Available types: simple|shield

Pins: gnd. α

Positioning pin in z : gnd. α

gnd.α gnd.α

simple shield

10 3 Usage

Element: Rheostat

Syntax: rheostat. α(z,type,angle)

Available types: Lrheo|Rrheo

Pins: rh. α.i|rh. α.s|rh. α.r

Positioning pin in z : rh. α.i

rh.α.i

rh.α.s rh.α.r

rh.α.i

rh.α.s rh.α.r

Lrheo Rrheo

Element: Diode

Syntax: diode. α(z,type,angle,pin,name,value)

Available types: normal|zener|LED

Pins: D. α.A|D. α.K

Positioning pin in z : D. α.A (pin=pinA)|D. α.K (pin=pinK)

normal zener
LED

D.α.A D.α.K D.α.A D.α.K D.α.A D.α.K

The diode is a special element, that is why it requires a special syntax.
This is due any circuit that contains a diode behaves in different ways if the
diode is in direct or inverse polarization. This means that is important the
diode placement sense. For this reason, a pin parameter is added, which
can take two values: pinA or pinK . This indicate what pin is placed on the
z position, if the anode (pinA) or the cathode (pinK).

Element: Measurement instrument

Syntax: meains. α(z,type,angle,text)

Available types: volt|ampere|watt

Pins: mi. α.l|mi. α.r|mi. α.p

Positioning pin in z : mi. α.l

3.2 Symbols 11

V

volt

A

ampere

W

watt

mi.α.l mi.α.r mi.α.l mi.α.r

mi.α.l mi.α.r

mi.α.p

Element: Junction

Syntax: junction. α(z,text)(pos)

Position (pos): top|bot|lft|rt|ulft|urt|llft|lrt

Pins: J. α

top

bot
lft rt ulft urt

llft lrt

Element: Mesh current

Syntax: imesh(center,width,height,sense,angle,name)

Sense: cw|ccw

cw ccw

3.2.1 Positioning

You can place a symbol using relative coordinates (the most usual way)
or absolute coordinates. The relative coordinates generally will refer to
element pins placed previously.

The first symbol should be placed on the coordinates origin (only for
simplicity) always using absolute coordinates. For example:

inductor.a(origin,Up,0,"L_1","10 H");

being origin =(0,0) .

The remaining elements are placed starting from this element using
relative coordinates in the form pin.ref+(x,y) . This means that the next
element will be placed a distance x to the right and y above, starting form
the pin pin.ref . For example if the insertion point of my next symbol is
L.a.r+(1cm,5mm) , it means that the symbol will be placed 1cm to the right
and 5mmabove the pin L.a.r , while the statement L.a.l+(-1cm,5mm)
sets the point 1cm to the left and 5mmabove the pin L.a.l .

12 3 Usage

However this doesn’t cover all the user needs because you may want to
center an element between two points (or pins) and you may not know their
coordinates. For these cases MAKECIRC provides the following statement:

centreof. α(pin1,pin2,sym);

being sym the symbol you want to center. To indicate this, you will use a
convenient abbreviation of the elements (see table 2).

Table 2: Elements abbreviations.

Element Abbreviation
Inductor ind
Capacitor cap
Motor mot
Generator gen
Transformer tra
AC source sac
DC source sdc
Current source si
Voltage source sv
Battery bat
Resistor res
Diode dio
Transistor bjt
Measurement instruments ins
Impedance imp
Lamp lam
Switch swt
Current cur

This statement returns the element insertion point (c. α) and their an-
gle phi. α whose direction is the straight line that unites the pins pin1
and pin2 .

To clear these aspects of positioning, an example will be given. Suppose
you want to include a resistor R of 10 Ω rotated 90 degrees in the coordinates
origin. Then you write (see section 3.2):

resistor.a(origin,normal,90,"R","10\ohm");

Next you include an inductor L at 2 centimeters at right of the resistor
by writing:

inductor.a(R.a.r+(2cm,0),Up,-90,"L","");

Now if you want to center a capacitor between these two elements, you
should write:

3.2 Symbols 13

centreof.A(R.a.r,L.a.l,cap);

which returns the insertion point c.A where the capacitor must be placed,
and the angle phi.A that it will be rotated. With these data you place the
capacitor C in the following way:

capacitor.a(c.A,normal,phi.A,"C","");

The complete code would be:

beginfig(1);
resistor.a(origin,normal,90,"R","10\ohm");
inductor.a(R.a.r+(2cm,0),Up,-90,"L","");
centreof.A(R.a.r,L.a.l,cap);
capacitor.a(c.A,normal,phi.A,"C","");

endfig;

whose result is shown in figure 1.

R 10 Ω L

C

Figure 1: Example of positioning.

Another possibility that can be present in the moment of positioning an
element is that you want to center a symbol under or next to another. For
this, MAKECIRC provides the following statement:

centerto. α(pin1,pin2,dist,sym)

being dist the separation distance from the element whose pins are pin1
and pin2 to the element you want to place. This distance can be a positive
value —if you want to move the element to the right or above— or negative
—if you want to move it to the left or under—. For example, using the
previous case, you can see that the coil isn’t centered with the resistor. To
do this, you should proceed in the following way:

beginfig(2);
resistor.a(origin,normal,90,"R","10\ohm");
centerto.A(R.a.l,R.a.r,2cm,ind);
inductor.a(A,Up,90,"L","");

endfig;

14 3 Usage

R 10 Ω L

Figure 2: Elements centering example.

The result of entering this code is shown in figure 2.

If you now want, as in the previous case, to center the capacitor between
these two element just as they are, the result will be the shown in figure 3,
that is, the capacitor is slightly rotated in its right part. This is due to the
pins used for centering have different heights, therefore the phi angle of
the centreof statement, will have the direction of the straight line that
unites these two points.

Source code of figure 3
1 beginfig(3);
2 resistor.a(origin,normal,90,"R","10\ohm");
3 centerto.A(R.a.l,R.a.r,2cm,ind);
4 inductor.a(A,Up,90,"L","");
5 centreof.B(R.a.r,L.a.r,cap);
6 capacitor.a(c.B,normal,phi.B,"C","");
7 endfig;

R 10 Ω L

C

Figure 3: Rotated capacitor for being centred among two
pins which heights are different.

You can specify the angle zero (0) instead of the angle phi that returns
the centreof statement and the capacitor will be correctly positioned (hor-
izontally), but this will generate problems later when you make the connec-
tion of the elements. Instead of this you should use the statements xpart
and ypart , that are characteristic of METAPOST and not of MAKECIRC.

These statements specify the horizontal (xpart) or vertical (ypart) ab-
solute coordinate of a point. In our case, it’s necessary to know the coor-
dinates of the point z1 (see figure 4), which is at the same height that the
resistor pin, and therefore it will allow to make a correct centering of the ca-
pacitor. The coordinates of this point are not exlplicitly known, but they are
implicit, because the z1 point has the same x coordinate (horizontal) that
the pin L.a.r and the same y coordinate (vertical) that the point R.a.r ,
that is

z1 = (xpart L.a.r , ypart R.a.r)

3.2 Symbols 15

R 10 Ω L

z1

Figure 4: Point z1 at the same height that the resistance
pin.

This is the point you should use as pin2 for centering, this means that
the line 5 of the source code in figure 3 should be replaced by the following:

centreof.B(R.a.r,(xpart L.a.r,ypart R.a.r),cap);

Also it can be defined a point z1 with these coordinates and then specify
it in the centering,3 that is:

z1=(xpart L.a.r,ypart R.a.r);
centreof.B(R.a.r,z1,cap);

If you use this last method, the corrected source code, which result is
shown in figure 5 is the following:

Source code of figure 5
beginfig(5);

resistor.a(origin,normal,90,"R","10\ohm");
centerto.A(R.a.l,R.a.r,2cm,ind);
inductor.a(A,Up,90,"L","");
z1=(xpart L.a.r,ypart R.a.r);
centreof.B(R.a.r,z1,cap);
capacitor.a(c.B,normal,phi.B,"C","");

endfig;

R 10 Ω L

C

Figure 5: Use of statements xpart and ypart to center
correctly the capacitor.

3.2.2 Wiring

To wire the elements with each other, you use two statements:

3This is also characteristic of METAPOST.

16 3 Usage

wire(pin1,pin2,type); and wireU(pin1,pin2,dist,type);

Available types for these statements are shown in table 3.

Table 3: Available types for the wire statements.
Statement Available types
wire nsq|udsq |rlsq
wireU udsq|rlsq

If the pins are at the same height, you should specify nsq type, with
which the wired will be in straight line, from pin1 to pin2 . This is also
valid for any wire that you want to make in straight line. If the pins, on
the other hand, are at different heights you should specify udsq type, with
which the wire will be made with straight angles, starting from pin1 to
above or below and then to pin2 , or rlsq and the wire will do in squares
but starting from pin1 to right or left and then to pin2 .

These last two are also valid for wireU statement, but in this, is added
one parameter, because you should use this statement when the wire need
three lines (in U form), that is when you have to connect two branches in
parallel. In this case, the direction up, down, right or left is given by the
sign of the parameter dist (see table 4).

Table 4: Direction according to the dist sign.
Type Sign of dist

+ −
udsq up down
rlsq right left

To illustrate this, the previous examples will be taken into account and
will be wired. For the example of figure 1 you will use three wire state-
ments: one to connect the resistance with the capacitor, other to connect
the capacitor with the coil, and another to connect the coil with the resis-
tance. For the first one and second, as the pins are at the same height it
will be:

wire(R.a.r,C.a.l,nsq);
wire(C.a.r,L.a.l,nsq);

and for the third, as the pins aren’t at the same height two different wiring
possibilities exists:

if you start from the coil you should use the udsq type because the coil
pin is above that of the resistance, therefore first it will make a line
down and then to the resistance pin; on the other hand

if you start from the resistance you should use rlsq type because the
resistance pin is lower than the coil pin, therefore it will first make a
line toward the right and then to the coil pin.

3.2 Symbols 17

wire(L.a.r,R.a.l,udsq);
% o bien %
wire(R.a.l,L.a.r,rlsq);

Both statements give the same result.

Adding the connection lines to the source code of figure 1 you obtain the
following complete code, which result is shown in figure 6.

beginfig(6);
resistor.a(origin,normal,90,"R","10\ohm");
inductor.a(R.a.r+(2cm,0),Up,-90,"L","");
centreof.A(R.a.r,L.a.l,cap);
capacitor.a(c.A,normal,phi.A,"C","");
wire(R.a.r,C.a.l,nsq);
wire(C.a.r,L.a.l,nsq);
wire(L.a.r,R.a.l,udsq);
% or
% wire(R.a.l,L.a.r,rlsq);

endfig;

R 10 Ω L

C

Figure 6: Example of elements wiring.

If the example of figure 5 is used, the wiring will be:

wire(R.a.r,C.a.l,nsq);
% resistance and capacitor, pins at the same height %
wire(C.a.r,L.a.r,rlsq);
% capacitor and coil, pin C.a.r above L.a.r %
wire(L.a.l,R.a.l,udsq);
% coil and resistance, pin L.a.l above R.a.l %

Adding these lines in the source code of figure 5 result:

Source code of figure 7
1 beginfig(7);
2 resistor.a(origin,normal,90,"R","10\ohm");
3 centerto.A(R.a.l,R.a.r,2cm,ind);
4 inductor.a(A,Up,90,"L","");
5 z1=(xpart L.a.r,ypart R.a.r);
6 centreof.B(R.a.r,z1,cap);
7 capacitor.a(c.B,normal,phi.B,"C","");
8 wire(R.a.r,C.a.l,nsq);

18 3 Usage

9 % resistance and capacitor, pins at the same height %
10 wire(C.a.r,L.a.r,rlsq);
11 % capacitor and coil, pin C.a.r above L.a.r %
12 wire(L.a.l,R.a.l,udsq);
13 % coil and resistance, pin L.a.l above R.a.l %
14 endfig;

R 10 Ω L

C

Figure 7: Other connection example.

To show the utility of wireU statement the source code of figure 7 will
be used and the line 7 will be changed by the following:

capacitor.a(c.B+(0,5mm),normal,phi.B,"C","");

that is, the capacitor isn’t placed in the point c.B ; it’s placed 5 millimeters
above it (see section 3.2.1). Making this you should also change the line 8
because the resistance and capacitor pins are now at different heights:

wire(R.a.r,C.a.l,udsq);

Furthermore, if you want the circuit to be symmetrical, in the line 12
you can’t use the wire statement because you first need to lower the line
5 millimeters (the same that the capacitor rose) and after that go towards
the coil pin. Therefore, you will do:

wireU(L.a.l,R.a.l,-5mm,udsq);

Adding these lines in the source code results:
Source code of figure 8

beginfig(8);
resistor.a(origin,normal,90,"R","10\ohm");
centerto.A(R.a.l,R.a.r,2cm,ind);
inductor.a(A,Up,90,"L","");
z1=(xpart L.a.r,ypart R.a.r);
centreof.B(R.a.r,z1,cap);
capacitor.a(c.B+(0,5mm),normal,phi.B,"C","");
wire(R.a.r,C.a.l,udsq);
% resistance and capacitor, pins at the same height %
wire(C.a.r,L.a.r,rlsq);
% capacitor and coil, pin C.a.r above L.a.r %
wire(L.a.l,R.a.l,-5mm,udsq);
% coil and resistance, pin L.a.l above R.a.l %

endfig;

3.3 Adding of text to the circuits 19

R 10 Ω L

C

Figure 8: Connection example using wireU .

3.3 Adding of text to the circuits

In occasions it is necessary to have a tool that allows you to add text in the
circuits because sometimes the information you can include in the symbol’s
labels is not enough. For this purpose MAKECIRC provides two statements:

puttext 〈pos〉(text,z); and ctext 〈pos〉(pin1,pin2,text,type);

being z the point where the text will be placed and 〈pos〉 the position that
the text will assume regarding z :

〈pos〉 → 〈empty 〉|top|bot|lft|rt|ulft|urt|llft|lrt

If you let the 〈pos〉 argument empty, the text will be placed exactly in
z , else it will be placed above (top), under (bot), left (lft), right (rt),
above left (ulft), above right (urt), under left (llft) or under right (lrt)
regarding z .

The ctext statement is for centering text between the pins pin1 and
pin2 . The available types are: witharrow to draw a double arrow from
pin1 to pin2 , and noarrow for only centering the text between these two
points.

In both statements the text should be placed between inverted commas
(").

To show an example, a transformer will be drawn and the labels V1 and
V2 will be placed in the primary and secondary respectly. Also the number
of spires N1 in the primary winding and N2 in the secondary winding will
be placed (see figure 9).

Source code of figure 9
beginfig(9);

transformer.a(origin,normal,0);

junction.a(tf.a.ps-(1cm,0),"1a")(top);
junction.b(tf.a.pi-(1cm,0),"1b")(bot);
junction.c(tf.a.ss+(1cm,0),"2a")(top);
junction.d(tf.a.si+(1cm,0),"2b")(bot);

wire(tf.a.ps,J.a,nsq);

20 4 Compilation

wire(tf.a.pi,J.b,nsq);
wire(tf.a.ss,J.c,nsq);
wire(tf.a.si,J.d,nsq);

puttext.bot("N_1",tf.a.pi);
puttext.bot("N_2",tf.a.si);
ctext.lft(J.a,J.b,"V_1",witharrow);
ctext(J.c,J.d,"V_2",noarrow);

endfig;

1a

1b

2a

2bN1 N2

V1 V2

Figure 9: Transformer with text.

4 Compilation

When all work is done, you should compile the file to generate and visualize
the results. For that, the first thing you should do is to save the file which
will have an extension mp, for example: circuits.mp .

Then you should compile twice through METAPOST to make sure that
the labels composed by LATEX come out correctly. You will do this by writing
in a command window (MSDOS in Windows) the following:

mp circuits
mp circuits

This will create files with the same name that the mp file but with nu-
meric extension: circuits.1, circuits.2,..., circuits.n , being n
the beginfig number (see section 3.1).

Now you only need to include the files .n in a LATEX document. You will
save this file with the name circuits.tex :

Minimal LATEX document to visualize the results
\documentclass{article}
\usepackage{graphicx} % package for graphic inclusion %

\begin{document}
\centering
\includegraphics{circuits.1}
\includegraphics{circuits.2}
...

21

\includegraphics{circuits.n}
\end{document}

and compile it with LATEX and dvips to obtain the final POSTSCRIPT file:

latex circuits
dvips circuits

Now you can visualize the file circuits.ps with Ghostview.

Other option is, if you only want to see the circuits, to use the following:4

tex mproof circuits.1 circuits.2 circuits.3
dvips mproof

and then visualize with Ghosview the file mproof.ps .

4Generally the file mproof.tex is included with METAPOST in the distributions.

